Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bayesian outbreak detection in the presence of reporting delays
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
Rekke forfattare: 42015 (engelsk)Inngår i: Biometrical Journal, ISSN 0323-3847, E-ISSN 1521-4036, Vol. 57, nr 6, s. 1051-1067Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

One use of infectious disease surveillance systems is the statistical aberration detection performed on time series of counts resulting from the aggregation of individual case reports. However, inherent reporting delays in such surveillance systems make the considered time series incomplete, which can be an impediment to the timely detection and thus to the containment of emerging outbreaks. In this work, we synthesize the outbreak detection algorithms of Noufaily etal.(2013) and Manitz and Hohle(2013) while additionally addressing right truncation caused by reporting delays. We do so by considering the resulting time series as an incomplete two-way contingency table which we model using negative binomial regression. Our approach is defined in a Bayesian setting allowing a direct inclusion of all sources of uncertainty in the derivation of whether an observed case count is to be considered an aberration. The proposed algorithm is evaluated both on simulated data and on the time series of Salmonella Newport cases in Germany in 2011. Altogether, our method aims at allowing timely aberration detection in the presence of reporting delays and hence underlines the need for statistical modeling to address complications of reporting systems. An implementation of the proposed method is made available in the R package surveillance as the function bodaDelay.

sted, utgiver, år, opplag, sider
2015. Vol. 57, nr 6, s. 1051-1067
Emneord [en]
Bayesian inference, Infectious diseases, INLA, Reporting delays, Surveillance
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-123506DOI: 10.1002/bimj.201400159ISI: 000363419700008OAI: oai:DiVA.org:su-123506DiVA, id: diva2:875649
Tilgjengelig fra: 2015-12-01 Laget: 2015-11-27 Sist oppdatert: 2017-12-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Höhle, Michael
Av organisasjonen
I samme tidsskrift
Biometrical Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 36 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf