Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing the consistency of public human tissue RNA-seq data sets
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).ORCID-id: 0000-0003-0839-2451
Antal upphovsmän: 42015 (Engelska)Ingår i: Briefings in Bioinformatics, ISSN 1467-5463, E-ISSN 1477-4054, Vol. 16, nr 6, s. 941-949Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Sequencing-based gene expression methods like RNA-sequencing (RNA-seq) have become increasingly common, but it is often claimed that results obtained in different studies are not comparable owing to the influence of laboratory batch effects, differences in RNA extraction and sequencing library preparation methods and bioinformatics processing pipelines. It would be unfortunate if different experiments were in fact incomparable, as there is great promise in data fusion and meta-analysis applied to sequencing data sets. We therefore compared reported gene expression measurements for ostensibly similar samples (specifically, human brain, heart and kidney samples) in several different RNA-seq studies to assess their overall consistency and to examine the factors contributing most to systematic differences. The same comparisons were also performed after preprocessing all data in a consistent way, eliminating potential bias from bioinformatics pipelines. We conclude that published human tissue RNA-seq expression measurements appear relatively consistent in the sense that samples cluster by tissue rather than laboratory of origin given simple preprocessing transformations. The article is supplemented by a detailed walkthrough with embedded R code and figures.

Ort, förlag, år, upplaga, sidor
2015. Vol. 16, nr 6, s. 941-949
Nyckelord [en]
RNA-seq, public data, meta-analysis, gene expression, clustering
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
URN: urn:nbn:se:su:diva-124785DOI: 10.1093/bib/bbv017ISI: 000365708700005PubMedID: 25829468OAI: oai:DiVA.org:su-124785DiVA, id: diva2:890880
Tillgänglig från: 2016-01-05 Skapad: 2016-01-04 Senast uppdaterad: 2022-03-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Person

Huss, Mikael

Sök vidare i DiVA

Av författaren/redaktören
Huss, Mikael
Av organisationen
Institutionen för biokemi och biofysikScience for Life Laboratory (SciLifeLab)
I samma tidskrift
Briefings in Bioinformatics
Biologiska vetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 53 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf