Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Lactobacillus reuteri and Staphylococcus aureus differentially influence the generation of monocyte-derived dendritic cells and subsequent autologous T cell responses
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylär biovetenskap, Wenner-Grens institut.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylär biovetenskap, Wenner-Grens institut.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylär biovetenskap, Wenner-Grens institut.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylär biovetenskap, Wenner-Grens institut.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Immunity, Inflammation and Disease, ISSN 2050-4527, Vol. 4, nr 3, s. 315-326Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Introduction: In early-life, the immature mucosal barrier allows contact between the gut microbiota and the developing immune system. Due to their strategic location and their ability to sample luminal antigen, dendritic cells (DC) play a central role in the interaction of microbes and immune cells in the gut. Here, we investigated how two bacteria associated with opposite immune profiles in children, that is, Lactobacillus (L.) reuteri and Staphylococcus (S.) aureus, influenced the differentiation of monocytes in vitro as well how the generated DC impacted T cell responses.

Methods: We exposed monocyte cultures to cell-free supernatants (CFS) from these bacteria during their differentiation to DC.

Results: The presence of L. reuteri-CFS during DC differentiation resulted in DC with a more mature phenotype, in terms of up-regulated surface markers (HLA-DR, CD86, CD83, CCR7) and enhanced cytokine production (IL6, IL10, and IL23), but had a reduced phagocytic capacity compared with non-treated monocyte-derived DC (Mo-DC). However, upon LPS activation, L. reuteri-CFS-generated DC displayed a more regulated phenotype than control Mo-DC with notable reduction of cytokine responses both at mRNA and protein levels. In contrast, S. aureus-CFS-generated DC were more similar to control Mo-DC both without and after LPS stimulation, but they were still able to induce responses in autologous T cells, in the absence of further T cell stimulation.

Conclusions: We show that bacterial signals during DC differentiation have a profound impact on DC function and possibly also for shaping the T cell pool.

sted, utgiver, år, opplag, sider
2016. Vol. 4, nr 3, s. 315-326
Emneord [en]
Cytokine, dendritic cells, Lactobacillus reuteri, monocytes, PCR array, Staphylococcus aureus, T cell
HSV kategori
Forskningsprogram
immunologi
Identifikatorer
URN: urn:nbn:se:su:diva-128263DOI: 10.1002/iid3.115ISI: 000383521400006OAI: oai:DiVA.org:su-128263DiVA, id: diva2:913754
Tilgjengelig fra: 2016-03-22 Laget: 2016-03-22 Sist oppdatert: 2022-03-23bibliografisk kontrollert
Inngår i avhandling
1. Lactobacilli- and Staphylococcus aureus mediated modulation of immune responses in vitro
Åpne denne publikasjonen i ny fane eller vindu >>Lactobacilli- and Staphylococcus aureus mediated modulation of immune responses in vitro
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The human gut harbors a vast number of microbes. These microbes are not passive bystanders. They are important in modulating the immune system. We have previously shown that early colonization with lactobacilli and Staphylococcus (S.) aureus differentially associates with allergy development and/or immune profile at early ages. Here we focus on understanding how these microbes modulate the response of intestinal epithelial cells and immune cells in vitro. In paper I, we investigated the impact of UV-killed and/or cell free supernatant (CFS) of different Lactobacillus (L.) species and S. aureus strains on cytokine production from intestinal epithelial cells (IEC) and immune cells. Enterotoxin-expressng S. aureus 161:2-CFS triggered CXCL-1/GRO-α and CXCL-8/IL-8 production by IEC. S. aureus-induced CXCL-8/IL-8 production was hampered by MyD88 gene silencing of IEC, indicating the importance of TLR signaling. Further, lactobacilli-CFS and S. aureus-CFS were able to induce the production of a number of cytokines by peripheral blood mononuclear cells (PBMC) from healthy donors, but only S. aureus triggered T-cell associated cytokines: IL-2, IL-17, IFN-γ and TNF-α; which were dampened by the co-treatment with S. aureus and any of the different Lactobacillus strains. Flow cytometry of the stimulated PBMC further verified IFN-γ and IL-17 production by T cells upon treatment with S. aureus-CFS, which also induced CTLA-4 expression and IL-10 production by Treg cells. In paper II, we investigated the influence of CFS of L. reuteri and S. aureus on the differentiation of monocyte to DC and subsequently how the generated DC influence T cell response. DC generated in the presence of L. reuteri exhibited an increase in expression of surface markers (HL-DR, CD86, CD83, CCR7) and cytokine production (IL-6, IL-10 and IL-23), but had a decreased phagocytic capacity compared with conventional Mo-DC, showing a more mature phenotype. However, upon LPS stimulation, DC generated in the presence of L. reuteri-CFS displayed a more regulatory phenotype, with a reduced cytokine response both at mRNA and protein levels. On the contrary, DC generated in the presence of S. aureus-CFS resembled the control Mo-DC both at mRNA and protein expression, but SA-DC was more efficient in inducing cytokine production in autologous T cells. In paper III, we studied the influence of L. reuteri-CFS on the retinoic acid (RA)-driven mucosal-like DCs’ phenotype and function to modulate T regulatory cells (Treg) in vitro. DC generated in the presence of RA showed a mucosal-like regulatory-DC phenotype with its CD103 expression, high IL10 production and decreased expression of genes associated with inflammation (NFκB1, RELB and TNF). Further, treatment with L. reuteri-CFS enhanced the regulatory phenotype of RA-DC by increasing the production of several chemokines, such as CXCL1, CXCL5, CCL3, CCL15 and CCL20, which are involved in gut homeostasis, while dampening the expression of most chemokine receptor genes. L. reuteri-CFS also increased CCR7 expression on RA-DC.  RA-DC co-cultured with T cell increased IL10 and FOXP3 expression in Treg. However L. reuteri-CFS pre-conditioning of the RA-DC did not improve the Treg phenotype. In conclusion, bacteria-CFS can have an impact on the response of IEC, differentiation and function of DC and, subsequently the T cell response, when taken together in the context of gut; these can have an impact on the health and disease of the host.

sted, utgiver, år, opplag, sider
Stockholm: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2016. s. 70
Emneord
lactobacilli, staphylococcus aureus, dendritic cells, retinoic acid, epithelial cells, T cells
HSV kategori
Forskningsprogram
immunologi
Identifikatorer
urn:nbn:se:su:diva-127399 (URN)978-91-7649-365-6 (ISBN)
Disputas
2016-04-29, Vivi Täckholmsalen (Q-salen) NPQ-huset, Svante Arrhenius väg 20, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Submitted.

Tilgjengelig fra: 2016-04-06 Laget: 2016-03-03 Sist oppdatert: 2022-02-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Haileselassie, YenenehQazi, Khaleda RahmanSverremark-Ekström, Eva

Søk i DiVA

Av forfatter/redaktør
Haileselassie, YenenehQazi, Khaleda RahmanSverremark-Ekström, Eva
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 121 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf