Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Direct shrinkage estimation of large dimensional precision matrix
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
2016 (engelsk)Inngår i: Journal of Multivariate Analysis, ISSN 0047-259X, E-ISSN 1095-7243, Vol. 146, s. 223-236Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this work we construct an optimal shrinkage estimator for the precision matrix in high dimensions. We consider the general asymptotics when the number of variables p -> infinity and the sample size n -> infinity so that p/n -> c is an element of (0, +infinity). The precision matrix is estimated directly, without inverting the corresponding estimator for the covariance matrix. The recent results from random matrix theory allow us to find the asymptotic deterministic equivalents of the optimal shrinkage intensities and estimate them consistently. The resulting distribution-free estimator has almost surely the minimum Frobenius loss. Additionally, we prove that the Frobenius norms of the inverse and of the pseudo-inverse sample covariance matrices tend almost surely to deterministic quantities and estimate them consistently. Using this result, we construct a bona fide optimal linear shrinkage estimator for the precision matrix in case c < 1. At the end, a simulation is provided where the suggested estimator is compared with the estimators proposed in the literature. The optimal shrinkage estimator shows significant improvement even for non-normally distributed data.

sted, utgiver, år, opplag, sider
2016. Vol. 146, s. 223-236
Emneord [en]
Large-dimensional asymptotics, Random matrix theory, Precision matrix estimation
HSV kategori
Forskningsprogram
statistik
Identifikatorer
URN: urn:nbn:se:su:diva-128383DOI: 10.1016/j.jmva.2015.09.010ISI: 000373648200018OAI: oai:DiVA.org:su-128383DiVA, id: diva2:914677
Tilgjengelig fra: 2016-03-24 Laget: 2016-03-24 Sist oppdatert: 2017-11-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Bodnar, Taras
Av organisasjonen
I samme tidsskrift
Journal of Multivariate Analysis

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 166 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf