Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Staphylococcus aureus-derived factors induce IL-10, IFN-gamma and IL-17A-expressing FOXP3(+)CD161(+) T-helper cells in a partly monocyte-dependent manner
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Show others and affiliations
Number of Authors: 82016 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, article id 22083Article in journal (Refereed) Published
Abstract [en]

Staphylococcus aureus (S. aureus) is a human pathogen as well as a frequent colonizer of skin and mucosa. This bacterium potently activates conventional T-cells through superantigens and it is suggested to induce T-cell cytokine-production as well as to promote a regulatory phenotype in T-cells in order to avoid clearance. This study aimed to investigate how S. aureus impacts the production of regulatory and pro-inflammatory cytokines and the expression of CD161 and HELIOS by peripheral CD4(+)FOXP3(+) T-cells. Stimulation of PBMC with S. aureus 161:2-cell free supernatant (CFS) induced expression of IL-10, IFN-gamma and IL-17A in FOXP3(+) cells. Further, CD161 and HELIOS separated the FOXP3(+) cells into four distinct populations regarding cytokine-expression. Monocyte-depletion decreased S. aureus 161:2-induced activation of FOXP3(+) cells while pre-stimulation of purified monocytes with S. aureus 161:2-CFS and subsequent co-culture with autologous monocyte-depleted PBMC was sufficient to mediate activation of FOXP3(+) cells. Together, these data show that S. aureus potently induces FOXP3(+) cells and promotes a diverse phenotype with expression of regulatory and pro-inflammatory cytokines connected to increased CD161-expression. This could indicate potent regulation or a contribution of FOXP3(+) cells to inflammation and repression of immune-suppression upon encounter with S. aureus.

Place, publisher, year, edition, pages
2016. Vol. 6, article id 22083
National Category
Biological Sciences Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Research subject
Molecular Bioscience
Identifiers
URN: urn:nbn:se:su:diva-128534DOI: 10.1038/srep22083ISI: 000370925800001PubMedID: 26917055OAI: oai:DiVA.org:su-128534DiVA, id: diva2:917290
Available from: 2016-04-06 Created: 2016-03-30 Last updated: 2019-10-15Bibliographically approved
In thesis
1. Immune maturation and lymphocyte characteristics in relation to early gut bacteria exposure
Open this publication in new window or tab >>Immune maturation and lymphocyte characteristics in relation to early gut bacteria exposure
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

At birth, the immune system is immature and the gut microbiota influences immune maturation. Staphylococcus aureus (S. aureus) and lactobacilli are part of the neonatal gut microbiota and have seemingly opposite effects on the immune system. S. aureus is a potent immune activator and early-life colonization associates with higher immune responsiveness later in life. Lactobacilli-colonization associates with reduced allergy-risk and lower immune responsiveness. Further, lactobacilli modulate immune-activation and have probiotic features.

Here, we investigated S. aureus-induced activation of human lymphocytes, including T regulatory cells (Tregs), conventional T-cells (CD4+ and CD8+), unconventional T-cells (γδ T-cells and MAIT-cells) and NK-cells from children and adults, together with the modulatory effect of lactobacilli on immune-activation. Further, early-life colonization with these bacteria was related to lymphocyte-maturation, plasma cytokine- and chemokine-levels and allergy. 

S. aureus cell free supernatant (CFS) and staphylococcal enterotoxin (SE) A induced an increased percentage of FOXP3+ Tregs and of CD161+, IL-10+, IFN-γ+ and IL-17A+ Tregs (Paper I). The same pattern was observed in children with a lower degree of activation, possibly due to lower CD161-expression and poor activation of naive T-cells (Paper II). S. aureus-CFS induced IFN-γ-expression, proliferation and cytotoxic capacity in conventional and unconventional T-cells, and NK-cells. SEA, but not SEH, induced activation of unconventional T-cells and NK-cells by unknown mechanism(s) (Paper III, extended data). Lactobacilli-CFS reduced S. aureus-induced lymphocyte activation without the involvement of IL-10, Tregs or monocytes, but possibly involving lactate (Paper III). Early-life colonization with S. aureus associated with increased percentages of CD161+ and IL-10+ Tregs while lactobacilli-colonization negatively correlated with the percentage of IL-10+ Tregs later in life (Paper II). Allergic disease in childhood associated with double allergic heredity, being born wintertime and with higher plasma levels of TH2-, TH17- and TFH-related chemokines early in life. Lactobacilli-colonization associated with lower prevalence of allergy, reduced chemokine-levels and increased levels of IFN-γ in plasma (Paper IV).   

This thesis provides novel insights into S. aureus- and SE-mediated activation of Tregs, unconventional T-cells and NK-cells and suggests an overall impairment of immune-responsiveness towards this bacterium in children. Further, S. aureus-colonization may influence the maturation of peripheral Tregs. Our data show that lactobacilli potently dampen lymphocyte-activation in vitro and that colonization associates with Treg-responsiveness, altered plasma cytokine- and chemokine-levels and with remaining non-allergic, thereby supporting the idea of lactobacilli as important immune-modulators.

Place, publisher, year, edition, pages
Stockholm: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2016. p. 125
Keywords
Allergy, cell-free supernatant, chemokines, colonization, cytokines, FOXP3, immune-maturation, lactobacilli, lymphocytes, NK-cells, Staphylococcus aureus, unconventional T-cells
National Category
Immunology
Research subject
Molecular Bioscience
Identifiers
urn:nbn:se:su:diva-134054 (URN)978-91-7649-504-9 (ISBN)978-91-7649-505-6 (ISBN)
Public defence
2016-11-25, sal E306, Arrheniuslaboratorierna, Svante Arrhenius väg 20 C, Stockholm, 09:30 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.

 

Available from: 2016-11-01 Created: 2016-09-28 Last updated: 2016-10-24Bibliographically approved
2. Bacterial Regulation of Peripheral Immunity: Mechanistic insights from lactobacilli and Staphylococcus aureus
Open this publication in new window or tab >>Bacterial Regulation of Peripheral Immunity: Mechanistic insights from lactobacilli and Staphylococcus aureus
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There is a constant cross-talk between our immune system and the colonizing microbiota. The gut resident bacteria produce a broad range of molecules with regulatory activities in both local and distal tissues. Staphylococcus (S.) aureus is a commensal bacterium with high pathogenic potential due to production of several potent virulence factors including staphylococcal enterotoxins (SEs). These SEs are known to induce overwhelming T cell responses, which can result in a serious condition known as toxic shock syndrome. In contrast, several species of bacteria from the genus Lactobacillus exhibit probiotic features and promote beneficial physiological and immunological effects in its host. The underlying mechanisms behind bacterial activation and regulation of peripheral lymphocytes remain elusive. In this thesis, we explored how secreted factors present in the cell free supernatants (CFS) of cultured S. aureus and lactobacilli mechanistically impact the activation of different types of T cells and NK cells. In paper I, we investigated the influence of S. aureus-CFS and SEA on regulatory T cells and found that despite de novo induction of FOXP3 expression, TREG cells also produced pro-inflammatory cytokines, which associated with CD161-expression. In paper II, we could show that S. aureus-CFS and SEA induce proliferation, cytotoxicity and cytokine production in conventional and unconventional T- and NK cells. Moreover, we also showed that the lactobacilli-CFS were able to dampen immune cell activation, which was partly linked to lactobacilli-derived lactate. In paper III, we continued to investigate the mechanism behind Lactobacillus-mediated dampening of induced lymphocyte responses and identified extracellular membrane vesicles to be one of the main components involved in Lactobacillus-mediated regulation of cytokine responses. Other observations made in paper II brought about several questions regarding the ability of SEs to activate unconventional T- and NK cells, which lacks certain receptors known to be required for SE-mediated activation of conventional T cells. In paper IV, we therefore investigated the mechanism behind SE-mediated activation of γδ T-, MAIT- and NK cells and found that SEs indirectly activated γδ T- and NK cells, which required the presence of conventional αβ T cells. In summary, this thesis presents novel insights into how soluble components from bacteria modulate immune cell responses and extends the general understanding of bacterial influence on peripheral immunity. 

Place, publisher, year, edition, pages
Stockholm: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2019. p. 66
Keywords
Immune regulation, Cytokines, T cells, gamma-delta T cells, MAIT cells, NK cells, Lactobacillus, Staphylococcus aureus, staphylococcal enterotoxins
National Category
Biological Sciences Immunology
Research subject
Molecular Bioscience
Identifiers
urn:nbn:se:su:diva-175184 (URN)978-91-7797-861-9 (ISBN)978-91-7797-862-6 (ISBN)
Public defence
2019-11-29, Vivi Täckholmsalen (Q-salen), NPQ-huset, Svante Arrhenius väg 20, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Manuscript.

Available from: 2019-11-06 Created: 2019-10-15 Last updated: 2019-10-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Björkander, SophiaJohansson, Maria A.Mata Forsberg, ManuelHolmlund, UlrikaSverremark-Ekström, Eva
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
Scientific Reports
Biological SciencesMedical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 147 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf