Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Amplification of Arctic warming by past air pollution reductions in Europe
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.
Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.
Vise andre og tillknytning
Rekke forfattare: 92016 (engelsk)Inngår i: Nature Geoscience, ISSN 1752-0894, E-ISSN 1752-0908, Vol. 9, nr 4, s. 277-+Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The Arctic region is warming considerably faster than the rest of the globe(1), with important consequences for the ecosystems(2) and human exploration of the region(3). However, the reasons behind this Arctic amplification are not entirely clear(4). As a result of measures to enhance air quality, anthropogenic emissions of particulate matter and its precursors have drastically decreased in parts of the Northern Hemisphere over the past three decades(5). Here we present simulations with an Earth system model with comprehensive aerosol physics and chemistry that show that the sulfate aerosol reductions in Europe since 1980 can potentially explain a significant fraction of Arctic warming over that period. Specifically, the Arctic region receives an additional 0.3Wm(-2) of energy, and warms by 0.5 degrees C on annual average in simulations with declining European sulfur emissions in line with historical observations, compared with a model simulation with fixed European emissions at 1980 levels. Arctic warming is amplified mainly in fall and winter, but the warming is initiated in summer by an increase in incoming solar radiation as well as an enhanced poleward oceanic and atmospheric heat transport. The simulated summertime energy surplus reduces sea-ice cover, which leads to a transfer of heat from the Arctic Ocean to the atmosphere. We conclude that air quality regulations in the Northern Hemisphere, the ocean and atmospheric circulation, and Arctic climate are inherently linked.

sted, utgiver, år, opplag, sider
2016. Vol. 9, nr 4, s. 277-+
HSV kategori
Forskningsprogram
tillämpad miljövetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-130127DOI: 10.1038/NGEO2673ISI: 000373374100010OAI: oai:DiVA.org:su-130127DiVA, id: diva2:929427
Tilgjengelig fra: 2016-05-18 Laget: 2016-05-09 Sist oppdatert: 2017-11-30bibliografisk kontrollert
Inngår i avhandling
1. Anthropogenic influence on climate through changes in aerosol emissions from air pollution and land use change
Åpne denne publikasjonen i ny fane eller vindu >>Anthropogenic influence on climate through changes in aerosol emissions from air pollution and land use change
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Particulate matter suspended in air (i.e. aerosol particles) exerts a substantial influence on the climate of our planet and is responsible for causing severe public health problems in many regions across the globe. Human activities have altered the natural and anthropogenic emissions of aerosol particles through direct emissions or indirectly by modifying natural sources. The climate effects of the latter have been largely overlooked. Humans have dramatically altered the land surface of the planet causing changes in natural aerosol emissions from vegetated areas. Regulation on anthropogenic and natural aerosol emissions have the potential to affect the climate on regional to global scales. Furthermore, the regional climate effects of aerosol particles could potentially be very different than the ones caused by other climate forcers (e.g. well mixed greenhouse gases). The main objective of this work was to investigate the climatic effects of land use and air pollution via aerosol changes.

Using numerical model simulations it was found that land use changes in the past millennium have likely caused a positive radiative forcing via aerosol climate interactions. The forcing is an order of magnitude smaller and has an opposite sign than the radiative forcing caused by direct aerosol emissions changes from other human activities. The results also indicate that future reductions of fossil fuel aerosols via air quality regulations may lead to an additional warming of the planet by mid-21st century and could also cause an important Arctic amplification of the warming. In addition, the mean position of the intertropical convergence zone and the Asian monsoon appear to be sensitive to aerosol emission reductions from air quality regulations. For these reasons, climate mitigation policies should take into consideration aerosol air pollution, which has not received sufficient attention in the past.

sted, utgiver, år, opplag, sider
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2017
Emneord
Climate change, Air quality, Land use, General circulation, Atmosphere-Ocean interactions, Aerosol climate effects, Earth system modelling
HSV kategori
Forskningsprogram
tillämpad miljövetenskap
Identifikatorer
urn:nbn:se:su:diva-137077 (URN)978-91-7649-650-3 (ISBN)978-91-7649-651-0 (ISBN)
Disputas
2017-02-17, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-01-25 Laget: 2016-12-22 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Acosta Navarro, Juan CamiloRiipinen, IrinaHansson, Hans-ChristenEkman, Annica M. L.
Av organisasjonen
I samme tidsskrift
Nature Geoscience

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 291 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf