The solvation of the ruthenium(II) tris(bipyridine) ion ([Ru(bpy)(3)](2+)) is investigated with molecular dynamics simulations of lithium halide solutions in polar solvents. The anion distribution around the [Ru(bpy)(3)](2+) complex exhibits a strong solvent dependence. In aqueous solution, the iodide ion forms a solvent shared complex with [Ru(bpy)(3)](2+), but not in the other solvents. Between Cl- and [Ru(bpy)(3)](2+), the strong hydration of the chloride ion results in a solvent separated complex where more than one solvent molecule separates the anion from the metal center. Hence, tailored solvation properties in electrolytes is a route to influence ion-ion interactions and related electron transfer processes.