Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Luciferase NanoLuc as a reporter for gene expression and protein levels in Saccharomyces cerevisiae
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.ORCID iD: 0000-0001-8948-0685
Number of Authors: 42016 (English)In: Yeast, ISSN 0749-503X, E-ISSN 1097-0061, Vol. 33, no 5, p. 191-200Article in journal (Refereed) Published
Abstract [en]

Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon-optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half-lives of 40 and 5 min, respectively. The commercial substrate Nano-Glo (R) is compatible with detection of yNluc bioluminescence in < 50 cells. Using the unstable yNlucPEST to report on the rapid and transient expression of a heat-shock promoter (PCYC1-HSE), we found a close match between the intensity of the bioluminescent signal and mRNA levels during both induction and decay. We demonstrated that the bioluminescence of yNluc fused to the C-terminus of a temperature-sensitive protein reports on its protein levels. In conclusion, yNluc and yNlucPEST are valuable new reporter proteins suitable for experiments with yeast using standard commercial substrate.

Place, publisher, year, edition, pages
2016. Vol. 33, no 5, p. 191-200
Keywords [en]
bioluminescence, reporter, luciferase, gene expression, protein stability
National Category
Biological Sciences Environmental Biotechnology
Research subject
Molecular Bioscience
Identifiers
URN: urn:nbn:se:su:diva-131221DOI: 10.1002/yea.3155ISI: 000375782300003OAI: oai:DiVA.org:su-131221DiVA, id: diva2:936671
Available from: 2016-06-14 Created: 2016-06-14 Last updated: 2022-03-23Bibliographically approved
In thesis
1. Regulation of cellular Hsp70: Proteostasis and aggregate management
Open this publication in new window or tab >>Regulation of cellular Hsp70: Proteostasis and aggregate management
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Proteins have to be folded to their native structures to be functionally expressed. Misfolded proteins are proteotoxic and negatively impact on cellular fitness. To maintain the proteome functional proteins are under the constant surveillance of dedicated molecular chaperones that perform protein quality control (PQC). Using the model organism yeast Saccharomyces cerevisiae this thesis investigates the molecular mechanisms that cells employ to maintain protein homeostasis (proteostasis). In Study I the role of the molecular chaperone Hsp110 in the disentanglement and reactivation of aggregated proteins was investigated. We found that Hsp110 is essential for cellular protein disaggregation driven by the molecular chaperones Hsp40, Hsp70 and Hsp104 and characterized its involvement via regulation of Hsp70 ATPase activity as a nucleotide exchange factor. In Study II we found out that Hsp110 undergoes translational frameshifting during its expression resulting in a nuclear targeting. Nuclear Hsp110 interacts with Hsp70 and reprograms the proteostasis system to better deal with stress and to confer longevity. Study III describes regulation of Hsp70 function in PQC by the nucleotide exchange factor Fes1. We found that rare alternative splicing regulates Fes1 subcellular localization in the cytosol and nucleus and that the cytosolic isoform has a key role in PQC. In Study IV we have revealed the molecular mechanism that Fes1 employ in PQC. We show that Fes1 carries a specialized release domain (RD) that ensures the efficient release of protein substrates from Hsp70, explaining how Fes1 maintains the Hsp70-chaperone system clear of persistent misfolded proteins. In Study V we report on the use of a novel bioluminescent reporter (Nanoluc) for use in yeast to measure the gene expression and protein levels. In summary, this thesis contributes to the molecular understanding of chaperone-dependent PQC mechanisms both at the level of individual components as well as how they interact to ensure proteostasis.

Place, publisher, year, edition, pages
Stockholm: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2017
National Category
Biochemistry Molecular Biology Cell Biology
Research subject
Molecular Bioscience
Identifiers
urn:nbn:se:su:diva-148410 (URN)978-91-7649-998-6 (ISBN)978-91-7649-999-3 (ISBN)
Public defence
2017-12-08, E306, Arrheniuslaboratorierna, Svante Arrhenius väg 20 C, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript.

Available from: 2017-11-15 Created: 2017-10-24 Last updated: 2025-02-20Bibliographically approved
2. Controlling protein homeostasis through regulation of Heat shock factor 1
Open this publication in new window or tab >>Controlling protein homeostasis through regulation of Heat shock factor 1
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In order to thrive in a changing environment all organisms need to ensure protein homeostasis (proteostasis). Proteostasis is ensured by the proteostasis system that monitors the folding status of the proteome and regulates cell physiology and gene expression to counteract any perturbations. An increased burden on the proteostasis system activates Heat shock factor 1 (Hsf1) to induce transcription of the heat shock response (HSR), a transiently induced transcriptional program including core proteostasis genes, importantly those encoding the Hsp70 class of molecular chaperones. The HSR assists cells in counteracting the harmful effects of protein folding stress and restoring proteostasis. The work presented in this thesis is based on experiments with the Saccharomyces cerevisiae (yeast) model with the overall goal of deciphering how Hsp70 detects and impacts on perturbations of cellular proteostasis and controls Hsf1 activity.

In Study I we describe the fundamental mechanism by which Hsp70 maintains Hsf1 in its latent state by controlling its ability to bind DNA. We found that Hsf1 and unfolded proteins directly compete for binding to the Hsp70 substrate-binding domain. During heat shock the pool of unfolded proteins mainly consist of misfolded, newly synthesized proteins. Severe out-titration of Hsp70 by misfolded substrates resulted in unrestrained Hsf1 activity inducing a previously uncharacterized genetic hyper-stress program. More insight into regulation of Hsp70 availability was gained in Study II where the two splice isoforms of the Hsp70 nucleotide exchange factor Fes1 were characterized. We found that the cytosolic splice isoform Fes1S is crucial to release unfolded proteins from Hsp70 and that impaired release results in strong Hsf1 activation.

In Study III we developed methodology to easily measure the rapid changes in Hsf1 activity upon proteostatic perturbations and to monitor protein turnover using the novel bioluminescent reporter NanoLuc optimized for yeast expression (yNluc). In Study IV we report that yNluc also functions as an in vivo reporter that detects severe perturbations of de novo protein folding by its failure to fold to an active conformation under such conditions.

Finally, in Study V we investigated how organellar proteostasis impacts on the availability of cytosolic Hsp70. We found that a lowered mitochondrial proteostatic load as a result of high translation accuracy extended lifespan and improved cytosolic proteostasis capacity, evidenced by more rapid stress recovery and less sensitivity to toxic misfolded proteins. In contrast, lowered mitochondrial translation accuracy decreased lifespan and impaired management of cytosolic protein aggregates as well as elicited a general transcriptional stress response.

Taken together, the findings presented in this thesis advance our understanding of how the regulatory mechanisms of the proteostasis system function. Furthermore, they provide novel methodology that will facilitate future studies to improve our understanding how cells integrate internal and external stress cues to control proteostasis.

Place, publisher, year, edition, pages
Stockholm: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2019. p. 60
Keywords
stress, protein homeostasis, molecular chaperones, heat shock response, Hsf1, Hsp70, Saccharomyces cerevisiae
National Category
Biochemistry Molecular Biology Cell Biology
Research subject
Molecular Bioscience
Identifiers
urn:nbn:se:su:diva-167081 (URN)978-91-7797-688-2 (ISBN)978-91-7797-708-7 (ISBN)
Public defence
2019-05-21, Vivi Täckholmsalen (Q-salen), NPQ-huset, Svante Arrhenius väg 20, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 4: Manuscript.

Available from: 2019-04-25 Created: 2019-03-25 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Masser, Anna E.Kandasamy, GanapathiKaimal, Jayasankar MohanakrishnanAndréasson, Claes

Search in DiVA

By author/editor
Masser, Anna E.Kandasamy, GanapathiKaimal, Jayasankar MohanakrishnanAndréasson, Claes
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
Yeast
Biological SciencesEnvironmental Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 311 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf