Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surface Partitioning in Organic-Inorganic Mixtures Contributes to the Size-Dependence of the Phase-State of Atmospheric Nanoparticles
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.ORCID iD: 0000-0002-9283-5747
Show others and affiliations
Number of Authors: 102016 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 50, no 14, p. 7434-7442Article in journal (Refereed) Published
Abstract [en]

Atmospheric particulate matter is one of the main factors governing the Earth's radiative budget, but its exact effects on the global climate are still uncertain. Knowledge on the molecular-scale surface phenomena as well as interactions between atmospheric organic and inorganic compounds is necessary for understanding the role of airborne nanoparticles in the Earth system. In this work, surface composition of aqueous model systems containing succinic acid and sodium chloride or ammonium sulfate is determined using a novel approach combining X-ray photoelectron spectroscopy, surface tension measurements and thermodynamic modeling. It is shown that succinic acid molecules are accumulated in the surface, yielding a 10-fold surface concentration as compared with the bulk for saturated succinic acid solutions. Inorganic salts further enhance this enrichment due to competition for hydration in the bulk. The surface compositions for various mixtures are parametrized to yield generalizable results and used to explain changes in surface tension. The enhanced surface partitioning implies an increased maximum solubility of organic compounds in atmospheric nanoparticles. The results can explain observations of size-dependent phase-state of atmospheric nanoparticles, suggesting that these particles can display drastically different behavior than predicted by bulk properties only.

Place, publisher, year, edition, pages
2016. Vol. 50, no 14, p. 7434-7442
National Category
Earth and Related Environmental Sciences
Research subject
Applied Environmental Science
Identifiers
URN: urn:nbn:se:su:diva-133389DOI: 10.1021/acs.est.6b00789ISI: 000380295700019PubMedID: 27326704OAI: oai:DiVA.org:su-133389DiVA, id: diva2:962974
Available from: 2016-09-07 Created: 2016-09-06 Last updated: 2025-02-06Bibliographically approved
In thesis
1. Investigating parameters governing liquid-phase cloud activation of atmospheric particles
Open this publication in new window or tab >>Investigating parameters governing liquid-phase cloud activation of atmospheric particles
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Aerosol-cloud interactions are one of the main sources of uncertainties in modeling and predicting the Earth’s climate. To overcome this uncertainty, we need to improve the understanding about the processes and parameters defining how aerosol particles turn into cloud condensation nuclei (CCN) or ice nuclei (IN) to produce cloud droplets or ice crystals. The focus of this dissertation is on liquid phase cloud droplets. The thesis investigates the effect of water solubility and surface tension on the CCN activity of atmospheric aerosol particles. These parameters are among the key properties defining how an aerosol particle can turn into a cloud droplet. The main goals of this thesis are to investigate 1) the CCN activity of aerosol particles containing both water soluble and insoluble substances and 2) the contribution of molecular-scale surface structure to the surface tension and CCN activity of atmospherically relevant aqueous mixtures.

In the first part of this thesis, the CCN activity of water-insoluble aerosol constituents coated by water-soluble or sparingly soluble species was investigated. The results showed that the CCN activity of the insoluble silica and black carbon particles, with sizes between 100 and 300 nm, increased with the amount of the coating on the insoluble cores and at thick enough coating approached the CCN activity of the soluble species. Moreover, controlled dry coating of the insoluble BC cores yielded a size-independent distribution of the coating material on the insoluble cores, which was not achieved by wet coating of the silica particles. The results also confirmed that by knowing the fraction of soluble material (coating thicknesses), the existing theories gave a reasonable estimate of the CCN activity for the mixed soluble-insoluble particles. Finally, the results highlight the need for including the impacts of co-emitted or later condensed compounds in estimates of the climate impacts of atmospheric insoluble aerosol species.

In the second part of the thesis, surface propensity of succinic acid, pure or mixed with soluble inorganic salts in the aqueous droplets, were quantified via molecular-level surface composition measurement by X-ray Photoelectron Spectroscopy (XPS). The XPS and molecular dynamic (MD) simulations of succinic acid aqueous solutions showed strong enrichment of the succinic acid at the surface of the liquid droplets compared to the bulk solution. This effect was more pronounced in the presence of the highly soluble inorganic salts like NaCl and (NH4)2SO4 in the system. The modeled surface tension of the pure organic or mixture of organic and inorganic substances, using surface enrichment factors derived from the XPS experiments were in good agreement with the experimental surface tension data. This demonstrates the high potential of XPS for direct measurements of the surface composition of atmospherically relevant aqueous mixtures. The results suggest that for modeling the phase-state and water content of the atmospheric particles, the contribution by the surface layer needs to be considered, because aqueous droplet can contain larger amounts of organic compounds than the bulk solubility limit of the solutions. However, the effect of the aqueous surface composition on the CCN activation of particles consisting of the studied mixtures was estimated to be very small.

The results presented in this thesis provide new insights into the relationship between aerosol particle composition and cloud condensation nuclei activity. However, the effect of more realistic complex mixtures will require more research. The results showed that for modeling semi-volatile species, the partitioning between the gas and condensed phase needs to be considered. In addition, along with the liquid-phase cloud activation, the ice nucleation ability of the particles made of soluble and insoluble species requires to be further investigated.

Place, publisher, year, edition, pages
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2018. p. 50
Keywords
CCN activation, surface tension, coated aerosols, black carbon
National Category
Climate Science Meteorology and Atmospheric Sciences Environmental Sciences
Research subject
Applied Environmental Science
Identifiers
urn:nbn:se:su:diva-152128 (URN)978-91-7797-105-4 (ISBN)978-91-7797-106-1 (ISBN)
Public defence
2018-03-15, De Geersalen, Geovetenskapens hus, Svante Arrhenius väg 14, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2018-02-20 Created: 2018-01-26 Last updated: 2025-02-01Bibliographically approved
2. Modelling the effects of organic aerosol phase partitioning processes on cloud formation
Open this publication in new window or tab >>Modelling the effects of organic aerosol phase partitioning processes on cloud formation
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Atmospheric aerosols particles may act as cloud condensation nuclei (CCN) that provide sites for condensation of water vapour for the formation of cloud droplets, called cloud droplet activation. Whether aerosol particles are CCN is determined by their size, composition and the ambient humidity. Cloud macrophysical properties together with the size and number concentration of droplets determine the optical properties of liquid phase clouds. Clouds are an important component in the Earth's radiation balance and aerosol-cloud interactions (ACI) are associated with the largest uncertainty in estimates made of anthropogenic radiative forcing in earth system models.

To constrain ACI and reduce uncertainties, an improvement in our understanding of CCN activation is required. Owing to its complex phase structure and chemical heterogeneity, the organic fraction of atmospheric aerosol introduces significant challenges in developing an exact description of cloud formation. In this thesis, a cloud parcel model is employed to systematically address parametric and process uncertainties in estimates of cloud droplet sizes and number concentrations (CDNC). To do so, the unified framework for organic aerosol (UFO) scheme was developed and embedded into the cloud parcel model, ICPM-UFO. The ICPM-UFO simulates partitioning of organic mass between the gas and aqueous bulk and surface phases, thereby providing means to theoretically diagnose changes in droplet nucleating potential of aerosol particles due to organic aerosol mass transfer processes.

Partitioning of surface active organic aerosol mass from the bulk particle phase to the surface phase results in a lowered, size-dependent surface tension that enhances activation potential of CCN and therefore simulated CDNC. A large fraction of organic aerosol constituents exist partitioned across particle and gas phases and simulation of cloud formation events show this semi-volatile organic mass to condense to the particle phase as humidity increases through the cloud base. This additional particle phase mass may be partially soluble. The more soluble component increases the activation potential by lowering the water activity, while the less soluble but more surface active component also increases the activation potential by further lowering of the surface tension. The compounding effects of the gas-particle and bulk-surface partitioning processes result in significant changes in CCN concentrations and CDNC for simulation on boreal aerosol. These results exhibit a significant over prediction of typical boreal CCN concentrations relative to in-situ measurements, though further sensitivity analysis with respect to the soluble fraction and surface phase description may be advantageous. Based on multivariate statistical approaches applied, resolution of the surface phase in cloud formation parameterisations within climate models is however not currently recommended.

Theoretical description of both partitioning processes require prescription of input parameters that are challenging to measure in-situ. These parameters include: SVOC volatility and enthalpy of vaporisation and organic component surface tension and film thickness. Further work using the inverse modelling framework established herein is recommended to provide estimation of these parameters while simultaneously matching simulated CDNC and/or CCN concentrations with observational data. It is envisaged that such an investigation will also yield insights into structural uncertainties associated with the choice of surface phase model - a point of contention both within this thesis and the wider literature.  

Place, publisher, year, edition, pages
Stockholm: Department of Environmental Science, Stockholm University, 2020. p. 52
Keywords
Cloud droplet activation, organic aerosol, cloud parcel modelling, Köhler theory, Sensitivity and Uncertainty analysis
National Category
Meteorology and Atmospheric Sciences
Research subject
Applied Environmental Science
Identifiers
urn:nbn:se:su:diva-182598 (URN)978-91-7911-222-6 (ISBN)978-91-7911-223-3 (ISBN)
Public defence
2020-09-11, digitally via conference (Zoom), public link at https://www.aces.su.se/, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.

Available from: 2020-08-19 Created: 2020-06-16 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Dalirian, MaryamWideqvist, UllaLowe, Samuel J.Riipinen, Ilona

Search in DiVA

By author/editor
Dalirian, MaryamWideqvist, UllaLowe, Samuel J.Riipinen, Ilona
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Environmental Science and Technology
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 109 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf