Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Determination of metoprolol enantiomers in human plasma and saliva samples utilizing microextraction by packed sorbent and liquid chromatography-tandem mass spectrometry
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. Damanhour University, Egypt.ORCID iD: 0000-0002-2485-4276
Show others and affiliations
Number of Authors: 62016 (English)In: BMC Biomedical chromotography, ISSN 0269-3879, E-ISSN 1099-0801, Vol. 30, no 8, p. 1309-1317Article in journal (Refereed) Published
Abstract [en]

A sensitive, accurate and reliable bioanalytical method for the enantioselective determination of metoprolol in plasma and saliva samples utilizing liquid chromatography-electrospray ionization tandem mass spectrometry was developed and validated. Human plasma and saliva samples were pretreated by microextraction by packed sorbent (MEPS) prior to analysis. A new MEPS syringe form with two inputs was used. Metoprolol enantiomers and internal standard pentycaine (IS) were eluted from MEPS sorbent using isopropanol after removal of matrix interferences using aliquots of 5% methanol in water. Complete separation of metoprolol enantiomers was achieved on a Cellulose-SB column (150x4.6mm, 5m) using isocratic elution with mobile phase 0.1% ammonium hydroxide in hexane-isopropanol (80:20, v/v) with a flow rate of 0.8mL/min. A post-column solvent-assisted ionization was applied to enhance metoprolol ionization signal in positive mode monitoring (+ES) using 0.5% formic acid in isopropanol at a flow rate of 0.2mL/min. The total chromatographic run time was 10min for each injection. The detection of metoprolol in plasma and saliva samples was performed using triple quadrupole tandem mass spectrometer in +ES under the following mass transitions: m/z 268.0872.09 for metoprolol and m/z 303.3154.3 for IS. The linearity range was 2.5-500ng/mL for both R- and S-metoprolol in plasma and saliva. The limits of detection and quantitation for both enantiomers were 0.5 and 2.5ng/mL respectively, in both matrices (plasma and saliva). The intra- and inter-day precisions were presented in terms of RSD values for replicate analysis of quality control samples and were <5%; the accuracy of determinations varied from 96 to 99%. The method was able to determine the therapeutic levels of metoprolol enantiomers in both human plasma and saliva samples successfully, which can aid in therapeutic drug monitoring in clinical laboratories.

Place, publisher, year, edition, pages
2016. Vol. 30, no 8, p. 1309-1317
Keywords [en]
metoprolol enantiomers, chiral chromatography, tandem mass spectrometry, therapeutic drug monitoring, plasma, saliva
National Category
Chemical Sciences
Research subject
Analytical Chemistry
Identifiers
URN: urn:nbn:se:su:diva-133381DOI: 10.1002/bmc.3685ISI: 000379971200020PubMedID: 26766521OAI: oai:DiVA.org:su-133381DiVA, id: diva2:967589
Available from: 2016-09-09 Created: 2016-09-06 Last updated: 2023-12-05Bibliographically approved
In thesis
1. Analytical Methods For Sports Drugs: Challenges and Approaches
Open this publication in new window or tab >>Analytical Methods For Sports Drugs: Challenges and Approaches
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Drugs used to enhance human performance in sport competitions are prohibited by the world anti-doping association (WADA). Biological samples from athletes are continuously tested for adverse analytical findings regarding the identity and/or quantity of the banned substances. The current thesis deals with the development of new analytical methods to determine the concentrations of certain drugs used by athletes and even by regular users for therapeutic purposes. The developed methods aim to analyze the contents of these drugs in the biological matrices; plasma, serum and saliva to provide a successful approach towards either doping detection or therapeutic monitoring. β-adrenergic blockers such as propranolol and metoprolol are used in sports to relief stress and as therapeutic agents in the treatment of hypertension. Both drugs are in chiral forms and available only as racemic mixtures. The different pharmacology of each enantiomer necessitates the monitoring of each enantiomer by stereoselective analytical technique such as chiral liquid chromatography for separation and mass spectrometry for selective detection. The Endogenous anabolic androgenic steroids (EAAS) on the other hand are only notoriously used in sports to increase muscle mass and strength. A method utilizing high-resolution mass spectrometry (HRMS) coupled to ultra-high performance liquid chromatography (UHPLC) was developed for the simultaneous determination of EAAS and their conjugated metabolites to provide a better insight into the steroidal module of the athlete biological passport (ABP). Moreover, the steroidal profile was assessed in serum using the proposed method after the administration of Growth hormone injection as an approach toward the implementation of a new endocrinological module based on steroids biomarkers to hormone doping.  Biological samples contain many components that may interfere with the analytical measurements. Therefore, sample preparation methods were developed using solid phase extraction (SPE) and miniaturized techniques such as microextraction by packed sorbents (MEPS) for the purification and pre-concentration of analytes prior to LC/MS analysis.

Place, publisher, year, edition, pages
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2019. p. 89
Keywords
Sports Drugs, Doping in Sports, Steroids, LC-MS/MS, Chiral analysis, high-resolution mass spectrometry, Sample preparation, Biological samples, solid phase extraction
National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:su:diva-172566 (URN)978-91-7797-835-0 (ISBN)978-91-7797-836-7 (ISBN)
Public defence
2019-10-18, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Available from: 2019-09-25 Created: 2019-09-03 Last updated: 2022-02-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Elmongy, HatemColmsjö, AndersAbdel-Rehim, Mohamed

Search in DiVA

By author/editor
Elmongy, HatemColmsjö, AndersAbdel-Rehim, Mohamed
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
BMC Biomedical chromotography
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 238 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf