Change search
ReferencesLink to record
Permanent link

Direct link
Soil-frost-enabled soil-moisture-precipitation feedback over northern high latitudes
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Number of Authors: 4
2016 (English)In: Earth System Dynamics, ISSN 2190-4979, E-ISSN 2190-4987, Vol. 7, no 3, 611-625 p.Article in journal (Refereed) Published
Abstract [en]

Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. The currently observed global warming is most pronounced in the Arctic region and is projected to persist during the coming decades due to anthropogenic CO2 input. This warming will certainly have effects on the ecosystems of the vast permafrost areas of the high northern latitudes. The quantification of such effects, however, is still an open question. This is partly due to the complexity of the system, including several feedback mechanisms between land and atmosphere. In this study we contribute to increasing our understanding of such land-atmosphere interactions using an Earth system model (ESM) which includes a representation of cold-region physical soil processes, especially the effects of freezing and thawing of soil water on thermal and hydrological states and processes. The coupled atmosphere-land models of the ESM of the Max Planck Institute for Meteorology, MPI-ESM, have been driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without newly implemented cold-region soil processes. Results show a large improvement in the simulated discharge. On the one hand this is related to an improved snowmelt peak of runoff due to frozen soil in spring. On the other hand a subsequent reduction in soil moisture enables a positive feedback to precipitation over the high latitudes, which reduces the model's wet biases in precipitation and evapotranspiration during the summer. This is noteworthy as soil-moisture-atmosphere feedbacks have previously not been the focus of research on the high latitudes. These results point out the importance of high-latitude physical processes at the land surface for regional climate.

Place, publisher, year, edition, pages
2016. Vol. 7, no 3, 611-625 p.
National Category
Physical Geography
URN: urn:nbn:se:su:diva-134284DOI: 10.5194/esd-7-611-2016ISI: 000382829000001OAI: diva2:1033107
Available from: 2016-10-05 Created: 2016-10-03 Last updated: 2016-10-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Earth System Dynamics
Physical Geography

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

ReferencesLink to record
Permanent link

Direct link