Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Coordinated disassembly of the divisome complex in Escherichia coli
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
Show others and affiliations
Number of Authors: 6
2016 (English)In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 101, no 3, 425-438 p.Article in journal (Refereed) Published
Abstract [en]

The divisome is the macromolecular complex that carries out cell division in Escherichia coli. Every generation it must be assembled, and then disassembled so that the sequestered proteins can be recycled. Whilst the assembly process has been well studied, virtually nothing is known about the disassembly process. In this study, we have used super-resolution SIM imaging to monitor pairs of fluorescently tagged divisome proteins as they depart from the division septum. These simple binary comparisons indicated that disassembly occurs in a coordinated process that consists of at least five steps: [FtsZ, ZapA] double right arrow [ZipA, FtsA] double right arrow [FtsL, FtsQ] double right arrow [FtsI, FtsN] double right arrow [FtsN]. This sequence of events is remarkably similar to the assembly process, indicating that disassembly follows a first-in, first-out principle. A secondary observation from these binary comparisons was that FtsZ and FtsN formed division rings that were spatially separated throughout the division process. Thus the data indicate that the divisome structure can be visualized as two concentric rings; a proto-ring containing FtsZ and an FtsN-ring.

Place, publisher, year, edition, pages
2016. Vol. 101, no 3, 425-438 p.
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-134454DOI: 10.1111/mmi.13400ISI: 000382542200005PubMedID: 27096604OAI: oai:DiVA.org:su-134454DiVA: diva2:1033835
Available from: 2016-10-10 Created: 2016-10-06 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Mirzadeh, Kiavashvon Heijne, GunnarDaley, Daniel O.
By organisation
Department of Biochemistry and BiophysicsScience for Life Laboratory (SciLifeLab)
In the same journal
Molecular Microbiology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 483 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf