Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Growth Retardation and Altered Isotope Composition As Delayed Effects of PCB Exposure in Daphnia magna
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 5
2016 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 50, no 15, 8296-8304 p.Article in journal (Refereed) Published
Abstract [en]

Trophic magnification factor (TMF) analysis employs stable isotope signatures to derive biomagnification potential for environmental contaminants. This approach relies on species delta N-15 values aligning with their trophic position (TP). This, however, may not always be true, because toxic exposure can alter growth and isotope allocation patterns. Here, effects of PCB exposure (mixture of PCB18, PCB40, PCB128, and PCB209) on delta N-15 and delta C-13 as well as processes driving these effects were explored using the cladoceran Daphnia magna. A two-part experiment assessed effects of toxic exposure during and after exposure; juvenile daphnids were exposed during 3 days (accumulation phase) and then allowed to depurate for 4 days (depuration phase). No effects on survival, growth, carbon and nitrogen content, and stable isotope composition were observed after the accumulation phase, whereas significant changes were detected in adults after the depuration phase. In particular, a significantly lower nitrogen content and a growth inhibition were observed, with a concomitant increase in delta N-15 (+0.1 parts per thousand) and decrease in delta C-13 (-0.1 parts per thousand). Although of low magnitude, these changes followed the predicted direction indicating that sublethal effects of contaminant exposure can lead to overestimation of TP and hence underestimated TMF.

Place, publisher, year, edition, pages
2016. Vol. 50, no 15, 8296-8304 p.
National Category
Environmental Engineering Earth and Related Environmental Sciences
Research subject
Applied Environmental Science
Identifiers
URN: urn:nbn:se:su:diva-134442DOI: 10.1021/acs.est.6b01731ISI: 000381063200042PubMedID: 27367056OAI: oai:DiVA.org:su-134442DiVA: diva2:1033871
Available from: 2016-10-10 Created: 2016-10-06 Last updated: 2017-11-30Bibliographically approved
In thesis
1. Towards understanding stable isotope signatures in stressed systems
Open this publication in new window or tab >>Towards understanding stable isotope signatures in stressed systems
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Stable isotope analysis (SIA) is a valuable tool in ecotoxicology because δ13C and δ15N may provide insights into the trophic transfer of contaminants in a food web. The relationship between a species’ trophic position (TP, determined from δ15N) and internal concentration of biomagnifying contaminants can be established and used for regulatory purposes. However, the exposure of organisms to xenobiotics incurs physiological costs, and the stable isotope signature of a consumer reflects not only diet but also a physiological state. The latter raises questions regarding the interpretation of stable isotope signatures in contaminated areas. Therefore, the aim of this Thesis was to evaluate the behaviour of consumers’ stable isotope signatures in stressed systems, with a primary focus on the effects of environmental contaminants.

In paper I, the physiological costs of chemical exposure were found to alter incorporation rates of dietary nitrogen and carbon in a consumer by influencing both growth and metabolic turnover, with resulting changes in isotope signatures relative to a control system. In paper II, the diet-consumer discrimination factors for 15N and 13C were confirmed to increase under chemical exposure mediated via increased metabolic costs. However, the physiological response was low and translated into only minor shifts in the δ13C and δ15N. The predictability of exposure effects on the stable isotope signature was demonstrated in paper III, in which animals exposed to a chemical with a known mode of action presented expected effects on elemental composition, body size, biomarkers of oxidative stress and the stable isotope signatures. Moreover, consumers’ oxidative balance was found to be related to their δ15N values, thus providing evidence of the kinetic isotope effect on the oxidative status. However, despite the alterations in stable isotope signatures observed in laboratory settings (papers I-III), the effect of xenobiotics on the TP estimates was nil or minor in the field-collected animals. Moreover, the TP values were not significantly different between the animals in the contaminated and the reference habitats because of the high overall uncertainties in the TP estimates (paper IV). Also, the TP estimates based on δ15N in bulk material were more similar between the contaminated and the reference systems than TP estimates based on δ15N values in amino acids. Therefore, the latter method appears more sensitive towards xenobiotics (and, possibly, other environmental stressors) and thus less suitable for TP assessment in contaminated areas.

This Thesis improved the overall understanding of the applicability of SIA in stressed systems by establishing relationships between various exposure regimes, physiological responses and the stable isotope signatures in consumers. In model species at low trophic levels, the exposure to xenobiotics was found to significantly affect δ13C and δ15N values, which can be expected whenever physiological responses are detected. However, because of the overall high uncertainty in TP estimates, no significant differences between contaminated and control systems were detected, although the estimated TP were consistently higher in the contaminated systems. Future research should focus on higher trophic levels, in which effects of a greater magnitude can be expected. Moreover, the effects in entire food webs should be addressed rather than single prey–consumer relationships as well as other environmental variables that may contribute to the stable isotope variability in and among systems under various environmental pressures.

Place, publisher, year, edition, pages
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2016. 38 p.
Keyword
Stable isotope analysis, trophic position, chemical exposure, oxidative stress, Daphnia magna, Gammarus spp., Limecola balthica
National Category
Environmental Sciences
Research subject
Applied Environmental Science
Identifiers
urn:nbn:se:su:diva-134967 (URN)978-91-7649-523-0 (ISBN)978-91-7649-524-7 (ISBN)
Public defence
2016-12-15, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 09:30 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Available from: 2016-11-22 Created: 2016-10-27 Last updated: 2016-11-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Ek, CarolineGerdes, ZandraGorokhova, Elena
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Environmental Science and Technology
Environmental EngineeringEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf