Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Learning Decision Trees from Histogram Data Using Multiple Subsets of Bins
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
2016 (English)In: Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference / [ed] Zdravko Markov, Ingrid Russell, AAAI Press, 2016, 430-435 p.Conference paper (Refereed)
Abstract [en]

The standard approach of learning decision trees from histogram data is to treat the bins as independent variables. However, as the underlying dependencies among the bins might not be completely exploited by this approach, an algorithm has been proposed for learning decision trees from histogram data by considering all bins simultaneously while partitioning examples at each node of the tree. Although the algorithm has been demonstrated to improve predictive performance, its computational complexity has turned out to be a major bottleneck, in particular for histograms with a large number of bins. In this paper, we propose instead a sliding window approach to select subsets of the bins to be considered simultaneously while partitioning examples. This significantly reduces the number of possible splits to consider, allowing for substantially larger histograms to be handled. We also propose to evaluate the original bins independently, in addition to evaluating the subsets of bins when performing splits. This ensures that the information obtained by treating bins simultaneously is an additional gain compared to what is considered by the standard approach. Results of experiments on applying the new algorithm to both synthetic and real world datasets demonstrate positive results in terms of predictive performance without excessive computational cost.

Place, publisher, year, edition, pages
AAAI Press, 2016. 430-435 p.
Keyword [en]
histogram variables, histogram tree, histogram classifier
National Category
Information Systems
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-135432ISBN: 978-1-57735-756-8 (print)OAI: oai:DiVA.org:su-135432DiVA: diva2:1045216
Conference
Twenty-Ninth International Florida Artificial Intelligence Research Society Conference, FLAIRS, Key Largo, Florida, May 16-18, 2016
Available from: 2016-11-08 Created: 2016-11-08 Last updated: 2016-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Free full text

Search in DiVA

By author/editor
Gurung, Ram B.Lindgren, TonyBoström, Henrik
By organisation
Department of Computer and Systems Sciences
Information Systems

Search outside of DiVA

GoogleGoogle Scholar

Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf