Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CHARACTERIZING SPIRAL ARM AND INTERARM STAR FORMATION
Show others and affiliations
Number of Authors: 7
2016 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 827, no 2, 103Article in journal (Refereed) Published
Abstract [en]

Interarm star formation contributes significantly to a galaxy's star formation budget and provides an opportunity to study stellar birthplaces unperturbed by spiral arm dynamics. Using optical integral field spectroscopy of the nearby galaxy NGC 628 with VLT/MUSE, we construct Ha maps including detailed corrections for dust extinction and stellar absorption to identify 391 H II regions at 35 pc resolution over 12 kpc(2). Using tracers sensitive to the underlying gravitational potential, we associate H II regions with either arm (271) or interarm (120) environments. Using our full spectral coverage of each region, we find that most physical properties (luminosity, size, metallicity, ionization parameter) of H II regions are independent of environment. We calculate the fraction of Ha luminosity due to the background of diffuse ionized gas (DIG) contaminating each H II region, and find the DIG surface brightness to be higher within H II regions than in the surroundings, and slightly higher within arm H II regions. Use of the temperature-sensitive [S II]/Ha line ratio instead of the Ha surface brightness to identify the boundaries of H II regions does not change this result. Using the dust attenuation as a tracer of the gas, we find depletion times consistent with previous work (2 x 10(9) yr) with no differences between the arm and interarm, but this is very sensitive to the DIG correction. Unlike molecular clouds, which can be dynamically affected by the galactic environment, we see fairly consistent properties of H II regions in both arm and interarm environments. This suggests either a difference in star formation and feedback in arms or a decoupling of dense star-forming clumps from the more extended surrounding molecular gas.

Place, publisher, year, edition, pages
2016. Vol. 827, no 2, 103
Keyword [en]
galaxies: individual (NGC 628), galaxies: ISM, galaxies: spiral, galaxies: star formation, H II regions, ISM: structure
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-135107DOI: 10.3847/0004-637X/827/2/103ISI: 000384001600015OAI: oai:DiVA.org:su-135107DiVA: diva2:1048198
Available from: 2016-11-21 Created: 2016-10-31 Last updated: 2016-11-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Adamo, Angela
By organisation
The Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astrophysical Journal
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf