Change search
ReferencesLink to record
Permanent link

Direct link
Detecting hospital-acquired infections: A document classification approach using support vector machines and gradient tree boosting
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Show others and affiliations
2016 (English)In: Health Informatics Journal, ISSN 1460-4582, E-ISSN 1741-2811Article in journal (Refereed) Epub ahead of print
Abstract [en]

Hospital-acquired infections pose a significant risk to patient health, while their surveillance is an additional workload for hospital staff. Our overall aim is to build a surveillance system that reliably detects all patient records that potentially include hospital-acquired infections. This is to reduce the burden of having the hospital staff manually check patient records. This study focuses on the application of text classification using support vector machines and gradient tree boosting to the problem. Support vector machines and gradient tree boosting have never been applied to the problem of detecting hospital-acquired infections in Swedish patient records, and according to our experiments, they lead to encouraging results. The best result is yielded by gradient tree boosting, at 93.7percent recall, 79.7percent precision and 85.7percent F1 score when using stemming. We can show that simple preprocessing techniques and parameter tuning can lead to high recall (which we aim for in screening patient records) with appropriate precision for this task.

Place, publisher, year, edition, pages
2016.
Keyword [en]
clinical decision-making, databases and data mining, ehealth, electronic health records, secondary care
National Category
Information Systems
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-136583DOI: 10.1177/1460458216656471OAI: oai:DiVA.org:su-136583DiVA: diva2:1055447
Available from: 2016-12-12 Created: 2016-12-12 Last updated: 2016-12-15

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Dalianis, Hercules
By organisation
Department of Computer and Systems Sciences
In the same journal
Health Informatics Journal
Information Systems

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 5 hits
ReferencesLink to record
Permanent link

Direct link