Change search
ReferencesLink to record
Permanent link

Direct link
Entropy-based Prediction of Network Protocols in the Forensic Analysis of DNS Tunnels
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
2016 (English)In: World Congress on Internet Security, IEEE conference proceedings , 2016Conference paper (Refereed)
Abstract [en]

DNS tunneling techniques are often used for malicious purposes but network security mechanisms have struggled to detect these. Network forensic analysis has thus been used but has proved slow and effort intensive as Network Forensics Analysis Tools struggle to deal with undocumented or new network tunneling techniques. In this paper we present a method to aid forensic analysis through automating the inference of protocols tunneled within DNS tunneling techniques. We analyze the internal packet structure of DNS tunneling techniques and characterize the information entropy of different network protocols and their DNS tunneled equivalents. From this, we present our protocol prediction method that uses entropy distribution averaging. Finally we apply our method on a dataset to measure its performance and show that it has a prediction accuracy of 75%. Our method also preserves privacy as it does not parse the actual tunneled content, rather it only calculates the information entropy.

Place, publisher, year, edition, pages
IEEE conference proceedings , 2016.
Keyword [en]
Forensics, DNS Tunneling, Malware Communication, Entropy, Traffic Classification
National Category
Information Systems
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-136620OAI: oai:DiVA.org:su-136620DiVA: diva2:1055502
Available from: 2016-12-12 Created: 2016-12-12

Open Access in DiVA

No full text

By organisation
Department of Computer and Systems Sciences
Information Systems

Search outside of DiVA

GoogleGoogle Scholar

Total: 12 hits
ReferencesLink to record
Permanent link

Direct link