Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structure of twisted and buckled bilayer graphene
Stockholm University, Nordic Institute for Theoretical Physics (Nordita).
Number of Authors: 32017 (English)In: 2d materials, ISSN 2053-1583, Vol. 4, no 1, article id 015018Article in journal (Refereed) Published
Abstract [en]

We study the atomic structure of twisted bilayer graphene, with very small mismatch angles (theta similar to 0.28(0)), a topic of intense recent interest. We use simulations, in which we combine a recently presented semi-empirical potential for single-layer graphene, with a new term for out-of-plane deformations, (Jain et al. 2015 J. Phys. Chem. C119 9646) and an often-used interlayer potential (Kolmogorov et al 2005 Phys. Rev. B 71 235415). This combination of potentials is computationally cheap but accurate and precise at the same time, allowing us to study very large samples, which is necessary to reach very small mismatch angles in periodic samples. By performing large scale atomistic simulations, we show that the vortices appearing in the Moire pattern in the twisted bilayer graphene samples converge to a constant size in the thermodynamic limit. Furthermore, the well known sinusoidal behavior of energy no longer persists once the misorientation angle becomes very small (theta < 1(0)). We also show that there is a significant buckling after the relaxation in the samples, with the buckling height proportional to the system size. These structural properties have direct consequences on the electronic and optical properties of bilayer graphene.

Place, publisher, year, edition, pages
2017. Vol. 4, no 1, article id 015018
Keywords [en]
bilayer graphene, elastic potential, vortices, local energy, buckling, Moire pattern
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:su:diva-137550DOI: 10.1088/2053-1583/4/1/015018ISI: 000388633300001OAI: oai:DiVA.org:su-137550DiVA, id: diva2:1064777
Available from: 2017-01-13 Created: 2017-01-09 Last updated: 2017-01-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Juričić, Vladimir
By organisation
Nordic Institute for Theoretical Physics (Nordita)
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf