Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The homotopy theory of type theories
University of Western Ontario.
Stockholm University, Faculty of Science, Department of Mathematics. (Logik)ORCID iD: 0000-0003-1390-2970
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We construct a left semi-model structure on the category of intensional type theories (precisely, on CxlCat_{Id,1,Σ(,Πext)}). This presents an infinity-category of such type theories; we show moreover that there is an infinity-functor Cl_∞ from there to the infinity-category of suitably structured quasi-categories. This allows a precise formulation of the conjectures that intensional type theory gives internal languages for higher categories, and provides a framework and toolbox for further progress on these conjectures.

National Category
Algebra and Logic
Research subject
Mathematical Logic
Identifiers
URN: urn:nbn:se:su:diva-140148OAI: oai:DiVA.org:su-140148DiVA, id: diva2:1077743
Available from: 2017-02-28 Created: 2017-02-28 Last updated: 2022-02-28

Open Access in DiVA

No full text in DiVA

Other links

arXiv

Authority records

Lumsdaine, Peter LeFanu

Search in DiVA

By author/editor
Lumsdaine, Peter LeFanu
By organisation
Department of Mathematics
Algebra and Logic

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 85 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf