We construct an explicit and universal A-infinity deformation of Batalin-Vilkovisky algebras, with all coefficients expressed as rational sums of multiple zeta values. If the Batalin-Vilkovisky algebra that we start with is cyclic, then so is the A-infinity deformation. Moreover, the adjoint action of the odd Poisson bracket acts by derivations of the A-infinity structure. The construction conjecturally defines a new presentation of the Grothendieck-Teichmuller Lie algebra.