Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Substituent effects on the relaxation dynamics of furan, furfural and β-furfural: a combined theoretical and experimental approach
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics.
Show others and affiliations
2017 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, 2025-2035 p.Article in journal (Refereed) Published
Abstract [en]

For the series furan, furfural and β-furfural we investigated the effect of substituents and their positioning on the photoinduced relaxation dynamics in a combined theoretical and experimental approach. Using time resolved photoelectron spectroscopy with a high intensity probe pulse, we can, for the first time, follow the whole deactivation process of furan through a two photon probe signal. Using the extended 2-electron 2-orbital model [Nenov et al., J. Chem. Phys., 2011, 135, 034304] we explain the formation of one central conical intersection and predict the influence of the aldehyde group of the derivatives on its geometry. This, as well as the relaxation mechanisms from photoexcitation to the final outcome was investigated using a variety of theoretical methods. Complete active space self consistent field was used for on-the-fly calculations while complete active space perturbation theory and coupled cluster theory were used to accurately describe critical configurations. Experiment and theory show the relaxation dynamics of furfural and β-furfural to be slowed down, and together they disclose an additional deactivation pathway, which is attributed to the nO lonepair state introduced with the aldehyde group.

Place, publisher, year, edition, pages
2017. Vol. 19, 2025-2035 p.
National Category
Atom and Molecular Physics and Optics
Research subject
Chemical Physics
Identifiers
URN: urn:nbn:se:su:diva-140474DOI: 10.1039/C6CP06240GISI: 000394426400036OAI: oai:DiVA.org:su-140474DiVA: diva2:1079471
Available from: 2017-03-08 Created: 2017-03-08 Last updated: 2017-05-02Bibliographically approved
In thesis
1. Excited-state dynamics of small organic molecules studied by time-resolved photoelectron spectroscopy
Open this publication in new window or tab >>Excited-state dynamics of small organic molecules studied by time-resolved photoelectron spectroscopy
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Ultra-violet and visible light induced processes in small organic molecules play very important roles in many fields, e.g., environmental sciences, biology, material development, chemistry, astrophysics and many others. Thus it is of great importance to better understand the mechanisms behind these processes. To achieve this, a bottom-up approach is most effective, where the photo-induced dynamics occurring in the simplest organic molecule (ethylene) are used as a starting point. Simple substituents and functional groups are added in a controlled manner to ethylene, and changes in the dynamics are investigated as a function of these modifications. In this manner, the dynamics occurring in more complex systems can be explored from a known base.

In this thesis, the excited state dynamics of small organic molecules are studied by a combination of time-resolved photoelectron spectroscopy and various computational methods in order to determine the basic rules necessary to help understand and predict the dynamics of photo-induced processes.

The dynamics occurring in ethylene involve a double bond torsion on the ππ* excited state, followed by the decay to the ground state coupled with pyramidalization and hydrogen migration. Several different routes of chemical modification are used as the basis to probe these dynamics as the molecular complexity is increased. (i) When ethylene is modified by the addition of an alkoxyl group (-OCnH2n+1), a new bond cleavage reaction is observed on the πσ* state. When modified by a cyano (-CN) group, a significant change in the carbon atom involved in pyramidalization is observed. (ii) When ethylene used to build up small cyclic polyenes, it is observed that the motifs of the ethylene dynamics persist, expressed as ring puckering and ring opening. (iii) In small heteroaromatic systems, i.e., an aromatic ring containing an ethylene-like sub-structure and one or two non-carbon atoms, the type of heteroatom (N: pyrrole, pyrazole O: furan) gives rise to different bond cleavage and ring puckering channels. Furthermore, adding an aldehyde group (-C=O) onto furan, as a way to lengthen the delocalised ring electron system, opens up additional reaction channels via a nπ* state.

The results presented here are used to build up a more complete picture of the dynamics that occur in small molecular systems after they are excited by a visible or UV photon, and are used as a basis to motivate further investigations.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2017. 71 p.
Keyword
time-resolved photoelectron spectroscopy, excited-state dynamics, organic molecules
National Category
Atom and Molecular Physics and Optics
Research subject
Chemical Physics
Identifiers
urn:nbn:se:su:diva-140482 (URN)978-91-7649-758-6 (ISBN)978-91-7649-759-3 (ISBN)
Public defence
2017-04-21, sal FA32, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Manuscript. Paper 6: Manuscript.

Available from: 2017-03-29 Created: 2017-03-08 Last updated: 2017-03-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Schalk, OliverGeng, TingThomas, Richard D.Hansson, Tony
By organisation
Department of Physics
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf