Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Host Cell Transcription Factor EGR1 Is Induced by Bacteria through the EGFR-ERK1/2 Pathway
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Show others and affiliations
Number of Authors: 5
2017 (English)In: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 7, 16Article in journal (Refereed) Published
Abstract [en]

The essential first step in bacterial colonization is adhesion to the host epithelial cells. The early host-responses post-bacterial adhesions are still poorly understood. Early growth response 1 (EGR1) is an early response transcriptional regulator that can be rapidly induced by various environmental stimuli. Several bacteria can induce EGR1 expression in host cells, but the involved bacterial characteristics and the underlying molecular mechanisms of this response are largely unknown. Here, we show that EGR1 can be induced in host epithelial cells by different species of bacteria independent of the adherence level, Gram-staining type and pathogenicity. However, bacterial viability and contact with host cells is necessary, indicating that an active interaction between bacteria and the host is important. Furthermore, the strongest response is observed in cells originating from the natural site of the infection, suggesting that the EGR1 induction is cell type specific. Finally, we show that EGFRERK1/2 and beta 1-integrin signaling are the main pathways used for bacteria-mediated EGR1 upregulation. In conclusion, the increase of EGR1 expression in epithelial cells is a common stress induced, cell type specific response upon host-bacteria interaction that is mediated by EGFRERK1/2 and beta 1-integrin signaling.

Place, publisher, year, edition, pages
2017. Vol. 7, 16
Keyword [en]
EGR1, bacterial signaling, adhesion, infection, early events, EGFR
National Category
Biological Sciences Microbiology in the medical area
Identifiers
URN: urn:nbn:se:su:diva-140313DOI: 10.3389/fcimb.2017.00016ISI: 000392653300001OAI: oai:DiVA.org:su-140313DiVA: diva2:1079484
Available from: 2017-03-08 Created: 2017-03-08 Last updated: 2017-03-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Saroj, Sunil D.Wassing, Gabriela M.Jonsson, Ann-Beth
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
Frontiers in Cellular and Infection Microbiology
Biological SciencesMicrobiology in the medical area

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf