6-Chloro- and 6-bromopurines can cross the blood-brain barrier and in situ give rise to substrates of multidrug resistance-associated proteins (MRPs). The electrophilic purines form glutathione conjugates in reactions catalyzed by intracellular glutathione transferases (GSTs), and the conjugates are subsequently exported from the cells by ATP-dependent membrane transporters. In rodent model systems it has been demonstrated that suitably radiolabeled 6-halogenopurines by this scheme are pro-probes useful in monitoring the functionality of MRPs in intact brains using positron emission tomography. Prior to applications in human subjects it is imperative to establish the purine pro-probes as effective substrates for human GSTs occurring in brain and other tissues. We have developed a spectrophotometric assay for the glutathione conjugation and determined specific activities with a range of human GSTs as well as some rat GSTs for comparison. The ubiquitous GST P1-1 showed the highest activities with the 6-halogenopurines, which bodes well for the application of pro-probes for human investigations.