Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reaction of S-cerevisiae mitochondria with ligands: Kinetics of CO and O-2 binding to flavohemoglobin and cytochrome c oxidase
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
Number of Authors: 6
2017 (English)In: Biochimica et Biophysica Acta - Bioenergetics, ISSN 0005-2728, E-ISSN 1879-2650, Vol. 1858, no 2, 182-188 p.Article in journal (Refereed) Published
Abstract [en]

Kinetic methods used to investigate electron and proton transfer within cytochrome c oxidase (CytcO) are often based on the use of light to dissociate small ligands, such as CO, thereby initiating the reaction. Studies of intact mitochondria using these methods require identification of proteins that may bind CO and determination of the ligand-binding kinetics. In the present study we have investigated the kinetics of CO-ligand binding to S. cerevisiae mitochondria and cellular extracts. The data indicate that CO binds to two proteins, CytcO and a (yeast) flavohemoglobin (yHb). The latter has been shown previously to reside in both the cell cytosol and the mitochondrial matrix. Here, we found that yHb resides also in the intermembrane space and binds CO in its reduced state. As observed previously, we found that the yHb population in the mitochondrial matrix binds CO, but only after removal of the inner membrane. The mitochondrial yHb (in both the intermembrane space and the matrix) recombines with CO with T congruent to 270 ms, which is significantly slower than observed with the cytosolic yHb (main component T congruent to 1.3 ms). The data indicate that the yHb populations in the different cell compartments differ in structure.

Place, publisher, year, edition, pages
2017. Vol. 1858, no 2, 182-188 p.
Keyword [en]
Electron transfer, Cytochrome aa(3), Yeast, Membrane protein, Ligand, Kinetics, Mechanism
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-140291DOI: 10.1016/j.bbabio.2016.11.009ISI: 000392776400010PubMedID: 27871795OAI: oai:DiVA.org:su-140291DiVA: diva2:1081304
Available from: 2017-03-13 Created: 2017-03-13 Last updated: 2017-03-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Björck, Markus L.Zhou, ShuRydström Lundin, CamillaOtt, MartinÄdelroth, PiaBrzezinski, Peter
By organisation
Department of Biochemistry and Biophysics
In the same journal
Biochimica et Biophysica Acta - Bioenergetics
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf