Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Kinase-Phosphatase Switch Transduces Environmental Information into a Bacterial Cell Cycle Circuit
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab). Philipps University Marburg, Germany.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University, Science for Life Laboratory (SciLifeLab). Philipps University Marburg, Germany.
Number of Authors: 3
2016 (English)In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 12, no 12, e1006522Article in journal (Refereed) Published
Abstract [en]

The bacterial cell cycle has been extensively studied under standard growth conditions. How it is modulated in response to environmental changes remains poorly understood. Here, we demonstrate that the freshwater bacterium Caulobacter crescentus blocks cell division and grows to filamentous cells in response to stress conditions affecting the cell membrane. Our data suggest that stress switches the membrane-bound cell cycle kinase CckA to its phosphatase mode, leading to the rapid dephosphorylation, inactivation and proteolysis of the master cell cycle regulator CtrA. The clearance of CtrA results in downregulation of division and morphogenesis genes and consequently a cell division block. Upon shift to non-stress conditions, cells quickly restart cell division and return to normal cell size. Our data indicate that the temporary inhibition of cell division through the regulated inactivation of CtrA constitutes a growth advantage under stress. Taken together, our work reveals a new mechanism that allows bacteria to alter their mode of proliferation in response to environmental cues by controlling the activity of a master cell cycle transcription factor. Furthermore, our results highlight the role of a bifunctional kinase in this process that integrates the cell cycle with environmental information.

Place, publisher, year, edition, pages
2016. Vol. 12, no 12, e1006522
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-140262DOI: 10.1371/journal.pgen.1006522ISI: 000392138700051PubMedID: 27941972OAI: oai:DiVA.org:su-140262DiVA: diva2:1081912
Available from: 2017-03-15 Created: 2017-03-15 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Heinrich, KristinaJonas, Kristina
By organisation
Department of Molecular Biosciences, The Wenner-Gren InstituteScience for Life Laboratory (SciLifeLab)
In the same journal
PLoS Genetics
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf