Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Distribution and expression of microbial rhodopsins in the Baltic Sea and adjacent waters
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Stockholm University, Science for Life Laboratory (SciLifeLab).
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Stockholm University, Science for Life Laboratory (SciLifeLab).
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences. Stockholm University, Science for Life Laboratory (SciLifeLab).
Show others and affiliations
Number of Authors: 72016 (English)In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 18, no 12, p. 4442-4455Article in journal (Refereed) Published
Abstract [en]

Rhodopsins are light-driven ion-pumping membrane proteins found in many organisms and are proposed to be of global importance for oceanic microbial energy generation. Several studies have focused on marine environments, with less exploration of rhodopsins in brackish waters. We investigated microbial rhodopsins in the Baltic Sea using size-fractionated metagenomic and metatranscriptomic datasets collected along a salinity gradient spanning from similar to 0 to 35 PSU. The normalised genomic abundance of rhodopsins in Bacteria, as well as rhodopsin gene expression, was highest in the smallest size fraction (0.1-0.8 mu m), relative to the medium (0.8-3.0 mu m) and large (> 3.0 mu m) size fractions. The abundance of rhodopsins in the two smaller size fractions displayed a positive correlation with salinity. Proteobacteria and Bacteroidetes rhodopsins were the most abundant while Actinobacteria rhodopsins, or actinorhodopsins, were common at lower salinities. Phylogenetic analysis indicated that rhodopsins have adapted independently to the marine-brackish transition on multiple occasions, giving rise to green light-adapted variants from ancestral blue light-adapted ones. A notable diversity of viral-like rhodopsins was also detected in the dataset and potentially linked with eukaryotic phytoplankton blooms. Finally, a new clade of likely proton-pumping rhodopsin with non-canonical amino acids in the spectral tuning and proton accepting site was identified.

Place, publisher, year, edition, pages
2016. Vol. 18, no 12, p. 4442-4455
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-140253DOI: 10.1111/1462-2920.13407ISI: 000392946900012PubMedID: 27306515OAI: oai:DiVA.org:su-140253DiVA, id: diva2:1082075
Available from: 2017-03-15 Created: 2017-03-15 Last updated: 2022-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Brindefalk, BjörnEkman, MartinIninbergs, KarolinaBergman, Birgitta

Search in DiVA

By author/editor
Brindefalk, BjörnEkman, MartinIninbergs, KarolinaBergman, Birgitta
By organisation
Department of Ecology, Environment and Plant SciencesScience for Life Laboratory (SciLifeLab)
In the same journal
Environmental Microbiology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 154 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf