Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Emergence of higher order rotational symmetry in the hidden order phase of URu2Si2
Show others and affiliations
Number of Authors: 7
2017 (English)In: Philosophical Magazine, ISSN 1478-6435, E-ISSN 1478-6443, Vol. 97, no 2, 144-154 p.Article in journal (Refereed) Published
Abstract [en]

Electrical resistivity measurements were performed as functions of temperature, magnetic field, and angle theta between the magnetic field and the c-axis of a URu2Si2 single crystal. The resistivity exhibits a two-fold oscillation as a function of theta at high temperatures, which undergoes a 180 degrees-phase shift (sign change) with decreasing temperature at around 35 K. The hidden order transition is manifested as a minimum in the magnetoresistance and amplitude of the two-fold oscillation. Interestingly, the resistivity also showed four-fold, six-fold, and eight-fold symmetries at the hidden order transition. These higher order symmetries were also detected at low temperatures, which could be a sign of the formation of another pseudogap phase above the superconducting transition, consistent with recent evidence for a pseudogap from point-contact spectroscopy measurements and NMR. Measurements of the magnetisation of single crystalline URu2Si2 with the magnetic field applied parallel and perpendicular to the crystallographic c-axis revealed regions with linear temperature dependencies between the hidden order transition temperature and about 25 K. This T-linear behaviour of the magnetisation may be associated with the formation of a precursor phase or 'pseudogap' in the density of states in the vicinity of 30-35 K.

Place, publisher, year, edition, pages
2017. Vol. 97, no 2, 144-154 p.
Keyword [en]
Hidden order, rotational symmetry, heavy-fermion metals
National Category
Materials Engineering Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-140386DOI: 10.1080/14786435.2016.1235294ISI: 000392596700005OAI: oai:DiVA.org:su-140386DiVA: diva2:1084770
Available from: 2017-03-27 Created: 2017-03-27 Last updated: 2017-03-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Balatsky, Alexander V.
By organisation
Nordic Institute for Theoretical Physics (Nordita)
In the same journal
Philosophical Magazine
Materials EngineeringPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf