Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
2017 (English)In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 486, no 1 April, 234-245 p.Article in journal (Refereed) Published
Abstract [en]

A feasibility study was performed to fabricate ITER In-Vessel components by one of the metal additivemanufacturing methods, Electron Beam Melting®(EBM®). Solid specimens of SS316L with 99.8% relativedensity were prepared from gas atomized precursor powder granules. After the EBM®process the phaseremains as austenite and the composition has practically not been changed. The RCC-MR code used fornuclear pressure vessels provides guidelines for this study and tensile tests and Charpy-V tests werecarried out at 22C (RT) and 250C (ET). This work provides thefirst set of mechanical and micro-structure data of EBM®SS316L for nuclear fusion applications. The mechanical testing shows that theyield strength, ductility and toughness are well above the acceptance criteria and only the ultimatetensile strength of EBM®SS316L is below the RCC-MR code. Microstructure characterizations reveal thepresence of hierarchical structures consisting of solidified melt pools, columnar grains and irregularshaped sub-grains. Lots of precipitates enriched in Cr and Mo are observed at columnar grain boundarieswhile no sign of element segregation is shown at the sub-grain boundaries. Such a unique microstructureforms during a non-equilibrium process, comprising rapid solidification and a gradient‘annealing’process due to anisotropic thermalflow of accumulated heat inside the powder granule matrix. Relationsbetween process parameters, specimen geometry (total building time) and sub-grain structure are dis-cussed. Defects are formed mainly due to the large layer thickness (100mmÞwhich generates insufficientbonding between a few of the adjacently formed melt pools during the process. Further studies shouldfocus on adjusting layer thickness to improve the strength of EBM®SS316L and optimizing total buildingtime.

Place, publisher, year, edition, pages
2017. Vol. 486, no 1 April, 234-245 p.
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-141056DOI: 10.1016/j.jnucmat.2016.12.042OAI: oai:DiVA.org:su-141056DiVA: diva2:1085489
Available from: 2017-03-29 Created: 2017-03-29 Last updated: 2017-04-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Zhong, YuanLiu, LeifengOlsén, JonCui, DaqingShen, Zhijian
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Nuclear Materials
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf