Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dissecting the proton transport pathway in electrogenic Na+/H+ antiporters
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
Number of Authors: 72017 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, no 7, p. E1101-E1110Article in journal (Refereed) Published
Abstract [en]

Sodium/proton exchangers of the SLC9 family mediate the transport of protons in exchange for sodium to help regulate intracellular pH, sodium levels, and cell volume. In electrogenic Na+/H+ antiporters, it has been assumed that two ion-binding aspartate residues transport the two protons that are later exchanged for one sodium ion. However, here we show that we can switch the antiport activity of the bacterial Na+/H+ antiporter NapA from being electrogenic to electroneutral by the mutation of a single lysine residue (K305). Electroneutral lysine mutants show similar ion affinities when driven by Delta pH, but no longer respond to either an electrochemical potential (psi) or could generate one when driven by ion gradients. We further show that the exchange activity of the human Na+/H+ exchanger NHA2 (SLC9B2) is electroneutral, despite harboring the two conserved aspartic acid residues found in NapA and other bacterial homologues. Consistently, the equivalent residue to K305 in human NHA2 has been replaced with arginine, which is a mutation that makes NapA electroneutral. We conclude that a transmembrane embedded lysine residue is essential for electrogenic transport in Na+/H+ antiporters.

Place, publisher, year, edition, pages
2017. Vol. 114, no 7, p. E1101-E1110
Keywords [en]
secondary active transporters, proton transport, membrane protein, Na+/H+ exchangers, energetics
National Category
Biological Sciences
Research subject
Biochemistry
Identifiers
URN: urn:nbn:se:su:diva-141418DOI: 10.1073/pnas.1614521114ISI: 000393989300010PubMedID: 28154142OAI: oai:DiVA.org:su-141418DiVA, id: diva2:1089122
Available from: 2017-04-18 Created: 2017-04-18 Last updated: 2017-09-22Bibliographically approved
In thesis
1. Establishing the molecular mechanism of sodium/proton exchangers
Open this publication in new window or tab >>Establishing the molecular mechanism of sodium/proton exchangers
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Sodium/proton exchangers are ubiquitous secondary active transporters that can be found in all kingdoms of life. These proteins facilitate the transport of protons in exchange for sodium ions to help regulate internal pH, sodium levels, and cell volume. Na+/H+ exchangers belong to the SLC9 family and are involved in many physiological processes including cell proliferation, cell migration and vesicle trafficking. Dysfunction of these proteins has been linked to physiological disorders, such as hypertension, heart failure, epilepsy and diabetes.

The goal of my thesis is to establish the molecular basis of ion exchange in Na+/H+ exchangers. By establishing how they bind and catalyse the movement of ions across the membrane, we hope we can better understand their role in human physiology.

In my thesis, I will first present an overview of Na+/H+ exchangers and their molecular mechanism of ion translocation as was currently understood by structural and functional studies when I started my PhD studies. I will outline our important contributions to this field, which were to (i) obtain the first atomic structures of the same Na+/H+ exchanger (NapA) in two major alternating conformations, (ii) show how a transmembrane embedded lysine residue is essential for carrying out electrogenic transport, and (iii) isolate and recorde the first kinetic data of a mammalian Na+/H+ exchanger (NHA2) in an isolated liposome reconstitution system.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2017. p. 47
Keywords
membrane protein, secondary active transporters, sodium/proton exchangers, proton transport, structure, energetics
National Category
Biochemistry and Molecular Biology Structural Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:su:diva-147333 (URN)978-91-7649-964-1 (ISBN)978-91-7649-965-8 (ISBN)
Public defence
2017-11-14, William-Olssonsalen, Geovetenskapens hus, Svante Arrhenius väg 14, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2017-10-20 Created: 2017-09-22 Last updated: 2017-10-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Uzdavinys, PovilasCoincon, MathieuNji, EmmanuelNdi, MamaWinkelmann, IvenDrew, David
By organisation
Department of Biochemistry and Biophysics
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf