Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The structure of marine deposits affectes arthropod communities in southern Baltic shore ecosystems
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
(English)Manuscript (preprint) (Other academic)
Keyword [en]
Algal deposits, Arthropod diversity, Climate change, Ecotones, Functional diversity, Marine deposits, Shore ecosystems, Species composition
National Category
Biological Sciences
Research subject
Plant Ecology
Identifiers
URN: urn:nbn:se:su:diva-141967OAI: oai:DiVA.org:su-141967DiVA: diva2:1089988
Available from: 2017-04-21 Created: 2017-04-21 Last updated: 2017-05-05Bibliographically approved
In thesis
1. Baltic shore-lands facing climate change
Open this publication in new window or tab >>Baltic shore-lands facing climate change
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis provides new insight concerning drivers behind differences in arthropod diversity and abundance in Baltic shore ecosystems and how the arthropod communities might be affected when the conditions in the Baltic Sea are altered due to climate change.  The focus has been on climate related changes that are unique for coastal ecosystems, especially sea level rise and changes in the inflow of marine nutrients.

As sea levels rise, features in coastal landscapes will be altered, islands and habitats will be flooded and diminished, and structural connectivity within the island landscape will therefore change. This thesis shows that arthropod diversity within the two arthropod groups, spiders and beetles, increases with island size but also that diversity is positively influenced by a high number of islands in the surroundings.

A changed distribution and occurrence of marine species, due to climate change or eutrophication, can also affect terrestrial organisms on the shore.  In the Baltic Sea the new conditions following climate change will decrease the prevalence of bladder-wrack and benefit filamentous algae. Algal deposits on shores reflect the marine species composition and a decreased prevalence of bladder-wrack in the Baltic Sea will also be visible on the shores.  This thesis shows that a lower proportion of bladder-wrack in the algal deposits will decrease the diversity and abundance of arthropods in these deposits.

Changes in the marine environment may also affect the inflow of insects with aquatic life stages and terrestrial adult stages.  On Baltic shores, prey species with aquatic life stages, especially chironomids, constitute a large proportion of the diet of the terrestrial predatory group, wolf spiders. In freshwater system, the inflow of chironomids is known to decrease with elevated water temperatures if this is true in the Baltic Sea prey availability of wolf spiders would decrease.  This thesis supports the importance of chironomids as a prey for coastal wolf spiders, but also shows that the diet varies over season with dominance of terrestrial prey in early summer shifting to a dominance of marine prey in late summer and autumn. This seasonal variation is primarily due to a gradual increase in the consumption of chironomids over season.

Climate change has the potential to alter the biogeographical conditions in coastal landscapes as well as the density and quality of marine nutrient inflow. Sea level rise will diminish and flood islands and this thesis shows that a moderate sea level rise of 0.5 meters would make the total number of islands in the outer part of Stockholm archipelago decrease with about 25 %. Sea level rise could thus have consequences for arthropod diversity in Baltic shore meadows in the near future. The combined effects of sea level rise and changed prevalence of marine species in the Baltic Sea will affect the abundance and diversity of arthropods substantially. The abundance and diversity of spiders and beetles will decrease on shores that today have a high occurrence of bladder-wrack and prey availability for coastal predators might decrease due to a decreased inflow of chironomids. Changes in the arthropod communities could have consequences also further up in the food chain, such as for shore birds feeding on these arthropods.

Place, publisher, year, edition, pages
Stockholm: Department of Ecology, Environment and Plant Sciences, Stockholm University, 2017. 40 p.
Keyword
Arthropod diversity, Baltic shores, Beetles, Climate change, Energy flows, Marine inflow, Sea level rise, Shore ecosystems, Species distribution, Spiders
National Category
Ecology
Research subject
Plant Ecology
Identifiers
urn:nbn:se:su:diva-141794 (URN)978-91-7649-782-1 (ISBN)978-91-7649-783-8 (ISBN)
Public defence
2017-06-09, Sal P216, NPQ-huset, Svante Arrhenius väg 20, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Manuscript.

Available from: 2017-05-17 Created: 2017-04-18 Last updated: 2017-05-17Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Strandmark, AlmaHambäck, Peter A.
By organisation
Department of Ecology, Environment and Plant Sciences
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf