Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Lagrangian tracing of the water-mass transformations in the Atlantic Ocean
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Meteorology .
Number of Authors: 3
2017 (English)In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 69, 1306311Article in journal (Refereed) Published
Abstract [en]

The thermohaline stream function has previously been used to describe the ocean circulation in temperature and salinity space. In the present study, the Lagrangian thermohaline stream function is introduced and computed for northward flowing water masses in the Atlantic Ocean, using Lagrangian trajectories. The stream function shows the water-mass transformations in the Atlantic Ocean, where warm and saline water is converted to cold and fresh as it flows from 17 degrees S to 58 degrees N. By analysing the Lagrangian divergence of heat and salt flux, the conversion of temperature is found to take place in the Gulf Stream, the upper flank of the North Atlantic subtropical gyre and in the North Atlantic Drift, whereas the conversion of salinity rather occurs over a narrower band in the same regions. Thus, conversions of temperature and salinity as shown by the Lagrangian thermohaline stream function are confined to the same regions in the domain. The study of a specific, representative trajectory shows that, in the absence of air-sea interactions, a mixing process leads to the conversion of temperature and salinity from warm and saline to cold and fresh, and that this process is confined to the North Atlantic subtropical gyre. However, to define and to understand this process, further investigation is needed.

Place, publisher, year, edition, pages
2017. Vol. 69, 1306311
Keyword [en]
thermohaline, subtropical gyre, mixing, Conveyor Belt, TRACMASS
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-142408DOI: 10.1080/16000870.2017.1306311ISI: 000397731400001OAI: oai:DiVA.org:su-142408DiVA: diva2:1092667
Available from: 2017-05-03 Created: 2017-05-03 Last updated: 2017-05-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Berglund, SaraDöös, KristoferNycander, Jonas
By organisation
Department of Meteorology
In the same journal
Tellus. Series A, Dynamic meteorology and oceanography
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 117 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf