Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Neutron Diffraction and EXAFS Studies of K2x/3Cu[Fe(CN)(6)](2/3)center dot nH(2)O
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Number of Authors: 4
2017 (English)In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 17, no 3, 1285-1292 p.Article in journal (Refereed) Published
Abstract [en]

The crystal structure of copper hexacyanoferrate (CuHCF), K2x/3Cu[Fe-(CN)(6)](2/3)center dot nH(2)O, with nominal compositions x = 0.0 and x = 1.0 was studied by neutron powder diffraction (NPD) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The compound crystallizes in space group Fm (3) over barm, with a = 10.1036(11) angstrom and a = 10.0588(5) angstrom for x = 0.0 and x = 1.0, respectively. Difference Fourier maps for x = 0.0 show that the coordinated water molecules are positioned at a site 1921 close to vacant N positions in the -Fe-C-N-Cu- framework, while additional zeolitic water molecules are distributed over three sites (8c, 32f, and 48g) in the -Fe-C-N-Cu- framework cavities. The refined water content for x = 0.0 is 16.8(8) per unit cell, in agreement with the ideal 16 (n = 4). For x = 1.0, the refinement suggests that 2.6 K atoms per unit cell (x = 0.98) are distributed only over the sites 8c and 32f in the cavities, and 13.9(7) water per unit cell are distributed over all the four positions. The EXAFS data for Fe, Cu, and K K-edges are in agreement with the NPD data, supporting a structure model with a linear -Fe-C-N-Cu- framework and K+ ions in the cavities.

Place, publisher, year, edition, pages
2017. Vol. 17, no 3, 1285-1292 p.
National Category
Chemical Sciences Materials Engineering
Identifiers
URN: urn:nbn:se:su:diva-142700DOI: 10.1021/acs.cgd.6b01684ISI: 000395493900042OAI: oai:DiVA.org:su-142700DiVA: diva2:1093721
Available from: 2017-05-08 Created: 2017-05-08 Last updated: 2017-05-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ojwang, Dickson O.Grins, JekabsSvensson, Gunnar
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Crystal Growth & Design
Chemical SciencesMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf