Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Science for Life Laboratory (SciLifeLab).
Show others and affiliations
Number of Authors: 22
2017 (English)In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 45, no 5, 2629-2643 p.Article in journal (Refereed) Published
Abstract [en]

Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene an-notation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodi-alis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies.

Place, publisher, year, edition, pages
2017. Vol. 45, no 5, 2629-2643 p.
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-142657DOI: 10.1093/nar/gkx006ISI: 000397286600039PubMedID: 28100699OAI: oai:DiVA.org:su-142657DiVA: diva2:1095161
Available from: 2017-05-12 Created: 2017-05-12 Last updated: 2017-05-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Engström, Pär G.
By organisation
Department of Biochemistry and BiophysicsScience for Life Laboratory (SciLifeLab)
In the same journal
Nucleic Acids Research
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf