Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spatial and temporal variability in MLT turbulence inferred from in situ and ground-based observations during the WADIS-1 sounding rocket campaign
Show others and affiliations
Number of Authors: 172017 (English)In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 35, no 3, p. 547-565Article in journal (Refereed) Published
Abstract [en]

In summer 2013 the WADIS-1 sounding rocket campaign was conducted at the Andoya Space Center (ACS) in northern Norway (69 degrees N, 16 degrees E). Among other things, it addressed the question of the variability in mesosphere/lower thermosphere (MLT) turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar near Tromso. This allowed for horizontal variability to be observed in the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate, epsilon varied in space in a wavelike manner both horizontally and in the vertical direction. This wavelike modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that the vertical mean value of radar observations of epsilon agrees reasonably with rocket-borne measurements. In this way defined <epsilon(radar)> value reveals clear tidal modulation and results in variation by up to 2 orders of magnitude with periods of 24 h. The <epsilon(radar)> value also shows 12 h and shorter (1 to a few hours) modulations resulting in one decade of variation in <epsilon(radar)> magnitude. The 24 h modulation appeared to be in phase with tidal change of horizontal wind observed by SAURA-MF radar. Such wavelike and, in particular, tidal modulation of the turbulence dissipation field in the MLT region inferred from our analysis is a new finding of this work.

Place, publisher, year, edition, pages
2017. Vol. 35, no 3, p. 547-565
Keywords [en]
Meteorology and atmospheric dynamics (turbulence)
National Category
Meteorology and Atmospheric Sciences
Identifiers
URN: urn:nbn:se:su:diva-143506DOI: 10.5194/angeo-35-547-2017ISI: 000399303200001OAI: oai:DiVA.org:su-143506DiVA, id: diva2:1099100
Available from: 2017-05-29 Created: 2017-05-29 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Hedin, JonasGumbel, Jörg

Search in DiVA

By author/editor
Hedin, JonasGumbel, Jörg
By organisation
Department of Meteorology
In the same journal
Annales Geophysicae
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 291 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf