Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
PINGU: a vision for neutrino and particle physics at the South Pole
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 333
2017 (English)In: Journal of Physics G: Nuclear and Particle Physics, ISSN 0954-3899, E-ISSN 1361-6471, Vol. 44, no 5, 054006Article in journal (Refereed) Published
Abstract [en]

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6 Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60 000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters theta(23) and Delta m(32)(2), including the octant of theta(23) for a wide range of values, and determine the neutrino mass ordering at 3 sigma median significance within five years of operation. PINGU's high precision measurement of the rate of nu(T) appearance will provide essential tests of the unitarity of the 3 x 3 PMNS neutrino mixing matrix. PINGU will also improve the sensitivity of searches for low mass dark matter in the Sun, use neutrino tomography to directly probe the composition of the Earth's core, and improve IceCube's sensitivity to neutrinos from Galactic supernovae. Reoptimization of the PINGU design has permitted substantial reduction in both cost and logistical requirements while delivering performance nearly identical to configurations previously studied.

Place, publisher, year, edition, pages
2017. Vol. 44, no 5, 054006
Keyword [en]
neutrino oscillations, atmospheric neutrinos, IceCube Neutrino Observatory, PINGU
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-143415DOI: 10.1088/1361-6471/44/5/054006ISI: 000399127900001OAI: oai:DiVA.org:su-143415DiVA: diva2:1099156
Available from: 2017-05-29 Created: 2017-05-29 Last updated: 2017-06-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ahrens, MaryonBohm, ChristianDumm, Jonathan P.Finley, ChadFlis, SamuelHultqvist, KlasWalck, ChristianWolf, MichaelZoll, Marcel
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Journal of Physics G: Nuclear and Particle Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf