Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A strategic screening approach to identify transformation products of organic micropollutants formed in natural waters
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 6
2017 (English)In: Environmental Science: Processes & Impacts, ISSN 2050-7887, E-ISSN 2050-7895, Vol. 19, no 4, 488-498 p.Article in journal (Refereed) Published
Abstract [en]

Many transformation products (TPs) from organic micropollutants are not included in routine environmental monitoring programs due to limited knowledge of their occurrence and fate. An efficient method to identify and prioritize critical compounds in terms of environmental relevance is needed. In this study, we applied a strategic screening approach based on a case-control concept to identify TPs formed along wastewater-impacted rivers. Time-integrated samples were collected over one week at both ends of a river stretch downstream of a wastewater treatment plant (WWTP) outfall and were analyzed by ultrahigh performance liquid chromatography interfaced with quadrupole time-of-flight mass spectrometry (UHPLC-QToF-MS/MS). The screening procedure of the high-resolution MS (HRMS) datasets consisted of three major steps: (i) screening for parent compounds (PCs) attenuated along the stretch; (ii) prediction of potential TPs from these PCs; and (iii) screening for TPs from this list with an increasing trend along the stretch. In total, 32 PCs decreased along the investigated river stretches. From these PCs, eight TPs had increasing concentrations along the studied stretches and could be tentatively identified. The identification of one TP (benzamide) was confirmed by its corresponding reference standard, while no standards were available for the remaining TPs.

Place, publisher, year, edition, pages
2017. Vol. 19, no 4, 488-498 p.
National Category
Chemical Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-143500DOI: 10.1039/c6em00635cISI: 000399908400002PubMedID: 28233005OAI: oai:DiVA.org:su-143500DiVA: diva2:1103563
Available from: 2017-05-30 Created: 2017-05-30 Last updated: 2017-05-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Li, ZhePlassmann, Merle M.Sobek, Anna
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Environmental Science: Processes & Impacts
Chemical SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf