Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sustainable use of renewable resources in a stylized social-ecological network model under heterogeneous resource distribution
Stockholm University, Faculty of Science, Stockholm Resilience Centre. Potsdam Institute for Climate Impact Research, Germany.
Number of Authors: 4
2017 (English)In: Earth System Dynamics, ISSN 2190-4979, E-ISSN 2190-4987, Vol. 8, no 2, 255-264 p.Article in journal (Refereed) Published
Abstract [en]

Human societies depend on the resources ecosystems provide. Particularly since the last century, human activities have transformed the relationship between nature and society at a global scale. We study this coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adaptive network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly rational imitation of resource use strategies and homophily in the formation of social network ties. The private and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) effort. We show that these social processes can have a profound influence on the environmental state, such as determining whether the private renewable resources collapse from overuse or not. Additionally, we demonstrate that heterogeneously distributed regional resource capacities shift the critical social parameters where this resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary models of the planetary social-ecological system, such socio-cultural phenomena as well as regional resource heterogeneities should receive attention in addition to the processes represented in established Earth system and integrated assessment models.

Place, publisher, year, edition, pages
2017. Vol. 8, no 2, 255-264 p.
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-143593DOI: 10.5194/esd-8-255-2017ISI: 000399308800001OAI: oai:DiVA.org:su-143593DiVA: diva2:1104055
Available from: 2017-05-31 Created: 2017-05-31 Last updated: 2017-05-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Donges, Jonathan F.
By organisation
Stockholm Resilience Centre
In the same journal
Earth System Dynamics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf