Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A dynamical systems approach to studying midlatitude weather extremes
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Meteorology .
Number of Authors: 3
2017 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 44, no 7, 3346-3354 p.Article in journal (Refereed) Published
Abstract [en]

Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1week in advance. Plain Language Summary Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel analysis technique for improving the prediction of extreme events, which identifies the large-scale atmospheric circulation configurations affording the best predictability. We specifically test our technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1week in advance.

Place, publisher, year, edition, pages
2017. Vol. 44, no 7, 3346-3354 p.
Keyword [en]
predictability, temperature extremes, dynamical systems, European cold spells
National Category
Meteorology and Atmospheric Sciences
Identifiers
URN: urn:nbn:se:su:diva-143583DOI: 10.1002/2017GL072879ISI: 000400186500044OAI: oai:DiVA.org:su-143583DiVA: diva2:1104117
Available from: 2017-05-31 Created: 2017-05-31 Last updated: 2017-05-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Messori, GabrieleCaballero, Rodrigo
By organisation
Department of Meteorology
In the same journal
Geophysical Research Letters
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 608 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf