Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Gel-based morphological design of zirconium metal-organic frameworks
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). University of Antwerp, Belgium.
Show others and affiliations
Number of Authors: 12
2017 (English)In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 8, no 5, 3939-3948 p.Article in journal (Refereed) Published
Abstract [en]

The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero-or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X - H, NH2, NO2, (OH)(2)), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N-2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 mm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.

Place, publisher, year, edition, pages
2017. Vol. 8, no 5, 3939-3948 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-143393DOI: 10.1039/c6sc05602dISI: 000400553000077OAI: oai:DiVA.org:su-143393DiVA: diva2:1104452
Available from: 2017-06-01 Created: 2017-06-01 Last updated: 2017-06-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Willhammar, Tom
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Chemical Science
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf