Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Determination of fragrance ingredients in fish by ultrasound-assisted extraction followed by purge & trap
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Number of Authors: 4
2017 (English)In: Analytical Methods, ISSN 1759-9660, E-ISSN 1759-9679, Vol. 9, no 15, 2237-2245 p.Article in journal (Refereed) Published
Abstract [en]

Fragrance materials are widely used in household and personal care products in applications that can lead to emissions into the aquatic environment. Assessing the potential of fragrance materials to bioaccumulate in fish in in vivo laboratory studies requires a reliable analytical method for determining the concentrations of chemical substances in fish tissue. Here, we present an analytical method for simultaneously measuring a group of model chemicals that are representative of chemicals found in fragrance materials in rainbow trout. This method involves ultrasound-assisted extraction (UAE) followed by enrichment of the fragrance ingredients using a purge & trap system. Nine fragrance ingredients including semi-volatile and volatile compounds were selected as model substances for method development. Homogenised whole rainbow trout subsamples were spiked with these nine model fragrance ingredients, hexachlorobenzene (HCB) and 2,2',5,5'-tetrachlorobiphenyl (PCB52). The targeted chemicals were extracted from the fish tissue using acetonitrile in an ultrasonic bath; after solvent exchange to hexane, they were extracted into the gas phase by heating the samples and purging with nitrogen and trapped on a solid-phase extraction (SPE) cartridge. Finally, these chemicals were eluted with hexane from the SPE column and analysed using gas chromatography-mass spectrometry (GC-MS). The proposed method has been evaluated for blanks, spiked recoveries and precision, which are all acceptable. We believe that the method presented here is generally applicable for analysis of acid-sensitive volatile and semi-volatile organic chemicals in fish and provides the basis to conduct in vivo bioaccumulation studies of fragrance materials.

Place, publisher, year, edition, pages
2017. Vol. 9, no 15, 2237-2245 p.
National Category
Chemical Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-143568DOI: 10.1039/c7ay00017kISI: 000399914300001OAI: oai:DiVA.org:su-143568DiVA: diva2:1104633
Available from: 2017-06-01 Created: 2017-06-01 Last updated: 2017-06-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Chen, Changer LongLöfstrand, KarinMacLeod, Matthew
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Analytical Methods
Chemical SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf