Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance of pile-up mitigation techniques for jets in pp collisions at root s=8 TeV using the ATLAS detector
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
Number of Authors: 2858
2016 (English)In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 11, 581Article in journal (Refereed) Published
Abstract [en]

The large rate of multiple simultaneous protonproton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 fb(-1) data sample collected at a centre-of-mass energy of root s = 8 TeV. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented.

Place, publisher, year, edition, pages
2016. Vol. 76, no 11, 581
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-143867DOI: 10.1140/epjc/s10052-016-4395-zISI: 000399931300001PubMedID: 28316490OAI: oai:DiVA.org:su-143867DiVA: diva2:1105657
Available from: 2017-06-05 Created: 2017-06-05 Last updated: 2017-06-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Abulaiti, YimingÅkerstedt, HenrikÅsman, BarbroBendtz, KatarinaBertoli, GabrieleBessidskaia Bylund, OlgaBohm, ChristianClément, ChristopheCribbs, Wayne A.Hellman, StenJon-And, KerstinKhandanyan, HovhannesKim, HyeonKlimek, PawelLundberg, OlofMilstead, David A.Moa, TorbjörnMolander, SimonPani, PriscillaPetridis, AndreasPlucinski, PawelPöttgen, RuthRossetti, ValerioShcherbakova, AnnaSilverstein, Samuel B.Sjölin, JörgenStrandberg, SaraTylmad, MajaUghetto, Michaël
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
European Physical Journal C
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf