Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis
Stockholm University, Faculty of Science, Department of Geological Sciences. Utrecht University, the Netherlands.
Show others and affiliations
Number of Authors: 14
2017 (English)In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 14, no 9, 2283-2292 p.Article in journal (Refereed) Published
Abstract [en]

The Arctic Ocean, especially the East Siberian Arctic Shelf (ESAS), has been proposed as a significant source of methane that might play an increasingly important role in the future. However, the underlying processes of formation, removal and transport associated with such emissions are to date strongly debated. CH4 concentration and triple isotope composition were analyzed on gas extracted from sediment and water sampled at numerous locations on the shallow ESAS from 2007 to 2013. We find high concentrations (up to 500 mu M) of CH4 in the pore water of the partially thawed subsea permafrost of this region. For all sediment cores, both hydrogen and carbon isotope data reveal the predominant occurrence of CH4 that is not of thermogenic origin as it has long been thought, but resultant from microbial CH4 formation. At some locations, meltwater from buried meteoric ice and/or old organic matter preserved in the subsea permafrost were used as sub-strates. Radiocarbon data demonstrate that the CH4 present in the ESAS sediment is of Pleistocene age or older, but a small contribution of highly C-14-enriched CH4, from unknown origin, prohibits precise age determination for one sediment core and in the water column. Our sediment data suggest that at locations where bubble plumes have been observed, CH4 can escape anaerobic oxidation in the surface sediment.

Place, publisher, year, edition, pages
2017. Vol. 14, no 9, 2283-2292 p.
National Category
Biological Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-143447DOI: 10.5194/bg-14-2283-2017ISI: 000400732000002OAI: oai:DiVA.org:su-143447DiVA: diva2:1106419
Available from: 2017-06-07 Created: 2017-06-07 Last updated: 2017-06-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Jansen, Joachim
By organisation
Department of Geological Sciences
In the same journal
Biogeosciences
Biological SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf