Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The varying mass distribution of molecular clouds across M83
Show others and affiliations
Number of Authors: 5
2017 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 468, no 2, 1769-1781 p.Article in journal (Refereed) Published
Abstract [en]

The work of Adamo et al. showed that the mass distributions of young massive stellar clusters were truncated above a maximum-mass scale in the nearby galaxy M83 and that this truncation mass varies with the galactocentric radius. Here, we present a cloud-based analysis of Atacama Large Millimeter/submillimeter Array CO(1 -> 0) observations of M83 to search for such a truncation mass in the molecular cloud population. We identify a population of 873 molecular clouds in M83 that is largely similar to those found in the Milky Way and Local Group galaxies, though clouds in the centre of the galaxy show high surface densities and enhanced turbulence, as is common for clouds in high-density nuclear environments. Like the young massive clusters, we find a maximum-mass scale for the molecular clouds which decreases radially in the galaxy. We find that the most young massive cluster tracks the most massive molecular cloud with the cluster mass being 10(-2) times that of the most massive molecular cloud. Outside the nuclear region of M83 (R-g > 0.5 kpc), there is no evidence for changing internal conditions in the population of molecular clouds, with the average internal pressures, densities and free-fall times remaining constant for the cloud population over the galaxy. This result is consistent with the bound cluster formation efficiency depending only on the large-scale properties of the interstellar medium rather than the internal conditions of individual clouds.

Place, publisher, year, edition, pages
2017. Vol. 468, no 2, 1769-1781 p.
Keyword [en]
stars: formation, ISM: clouds, galaxies: individual: M83
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-143428DOI: 10.1093/mnras/stx499ISI: 000399429600041OAI: oai:DiVA.org:su-143428DiVA: diva2:1107347
Available from: 2017-06-09 Created: 2017-06-09 Last updated: 2017-06-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Adamo, Angela
By organisation
Department of Astronomy
In the same journal
Monthly notices of the Royal Astronomical Society
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf