Sub-grain structure in additive manufactured stainless steel 316L
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The thesis focuses on exploring the sub-grain structure in stainless steel 316L prepared by additive manufacturing (AM). Two powder-bed based AM methods are involved: selective laser melting (SLM) and electron beam melting (EBM). It is already known that AM 316L has heterogeneous property and hierarchy structure: micro-sized melt pools, micro-sized grains, nano-sized sub-grain structure and nano-sized inclusions. Yet, the relation among these structures and their influence on mechanical properties have not been clearly revealed so far. Melt pool boundaries having lower amount of sub-grain segregated network structures (Cellular structure) are weaker compared to the base material. Compared with cell boundaries, grain boundaries have less influence on strength but are still important for ductility. Cell boundaries strengthen the material without losing ductility as revealed by mechanical tests. Cellular structure can be continuous across the melt pool boundaries, low angle sub-grain boundaries, but not grain boundaries. Based on the above understanding, AM process parameters were adjusted to achieve customized mechanical properties. Comprehensive characterization were carried out to investigate the density, composition, microstructure, phase, magnetic permeability, tensile property, Charpy impact property, and fatigue property of both SLM and EBM SS316L at room temperature and at elevated temperatures (250°C and 400°C). In general, SLM SS316L has better strength while EBM SS316L has better ductility due to the different process conditions. Improved cell connection between melt pools were achieved by rotating 45° scanning direction between each layer compared to rotating 90°. Superior mechanical properties (yield strength 552 MPa and elongation 83%) were achieved in SLM SS316L fabricated with 20 µm layer thickness and tested in the building direction. Y2O3 added oxide dispersed strengthening steel (ODSS) were also prepared by SLM to further improve its performance at elevated temperatures. Slightly improved strength and ductility (yield strength 574 MPa and elongation 90%) were obtained on 0.3%Y2O3-ODSS with evenly dispersed nanoparticles (20 nm). The strength drops slightly but ductility drops dramatically at elevated temperatures. Fractographic analysis results revealed that the coalescence of nano-voids is hindered at room temperature but not at elevated temperatures. The achieved promising properties in large AM specimens assure its potential application in nuclear fusion. For the first time, ITER first wall panel parts with complex inner pipe structure were successfully fabricated by both SLM and EBM which gives great confidence to application of AM in nuclear industry.
Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University , 2017. , p. 66
Keywords [en]
Additive manufacturing, Selective laser melting, Electron beam melting, stainless steel, Oxide dispersion strengthened steel, Cellular structure, Nano-inclusions
National Category
Materials Chemistry Metallurgy and Metallic Materials
Research subject
Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-144519ISBN: 978-91-7649-907-8 (print)ISBN: 978-91-7649-908-5 (electronic)OAI: oai:DiVA.org:su-144519DiVA, id: diva2:1114451
Public defence
2017-09-08, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.
2017-08-162017-06-232022-02-28Bibliographically approved
List of papers