Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
PASSIVE DOSING OF TRICLOSAN IN MULTIGENERATION TESTS WITH COPEPODS - STABLE EXPOSURE CONCENTRATIONS AND EFFECTS AT THE LOW mu g/L RANGE
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Show others and affiliations
Number of Authors: 6
2017 (English)In: Environmental Toxicology and Chemistry, ISSN 0730-7268, E-ISSN 1552-8618, Vol. 36, no 5, 1254-1260 p.Article in journal (Refereed) Published
Abstract [en]

Ecotoxicity testing is a crucial component of chemical risk assessment. Still, due to methodological difficulties related to controlling exposure concentrations over time, data on long-term effects of organic chemicals at low concentrations are limited. The aim of the present study was, therefore, to test the applicability of passive dosing to maintain stable concentrations of the organochlorine bacteriocide triclosan in the water phase during a 6-wk multigeneration population development test with the harpacticoid copepod Nitocra spinipes. Triclosan was loaded into silicone (1000 mg), which was used as passive dosing phase in the exposure vials. The distribution ratio for triclosan between silicone and water (Dsilicone-water) was 10466 +/- 1927. A population development test was conducted at 3 concentration levels of triclosan that were measured to be 3 mu g/L to 5 mu g/L, 7 mu g/L to 11 mu g/L and 16 mu g/L to 26 mu g/L. The results demonstrate that passive dosing is applicable for long-term ecotoxicity testing of organic chemicals, including during significant growth of the test organism population. Shifts in the demographic structure of the population during exposure suggest the most severe effects were exerted on juvenile development. Progressively lower development index values in the populations exposed to increasing triclosan concentrations suggest developmental retardation. The results further stress the need for chronic exposure during ecotoxicity testing in chemical risk assessment because even the most sensitive endpoint was not significant until after 7 d of exposure.

Place, publisher, year, edition, pages
2017. Vol. 36, no 5, 1254-1260 p.
Keyword [en]
Passive dosing, Triclosan, Chronic toxicity, Silicone, Exposure
National Category
Earth and Related Environmental Sciences Basic Medicine
Identifiers
URN: urn:nbn:se:su:diva-144864DOI: 10.1002/etc.3649ISI: 000402302300017PubMedID: 27731510OAI: oai:DiVA.org:su-144864DiVA: diva2:1117461
Available from: 2017-06-29 Created: 2017-06-29 Last updated: 2017-06-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Ribbenstedt, AntonMustajärvi, LukasBreitholtz, MagnusGorokhova, ElenaSobek, Anna
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Environmental Toxicology and Chemistry
Earth and Related Environmental SciencesBasic Medicine

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf