Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the real rank of monomials
Stockholm University, Faculty of Science, Department of Mathematics.
Number of Authors: 4
2017 (English)In: Mathematische Zeitschrift, ISSN 0025-5874, E-ISSN 1432-1823, Vol. 286, no 1-2, 571-577 p.Article in journal (Refereed) Published
Abstract [en]

In this paper we study the real rank of monomials and we give an upper bound for it. We show that the real and the complex ranks of a monomial coincide if and only if the least exponent is equal to one.

Place, publisher, year, edition, pages
2017. Vol. 286, no 1-2, 571-577 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:su:diva-144801DOI: 10.1007/s00209-016-1774-yISI: 000401004700020OAI: oai:DiVA.org:su-144801DiVA: diva2:1121682
Available from: 2017-07-12 Created: 2017-07-12 Last updated: 2017-07-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Mathematics
In the same journal
Mathematische Zeitschrift
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf