Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Physicochemical code for quinary protein interactions in Escherichia coli
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
Number of Authors: 72017 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, no 23, p. E4556-E4563Article in journal (Refereed) Published
Abstract [en]

How proteins sense and navigate the cellular interior to find their functional partners remains poorly understood. An intriguing aspect of this search is that it relies on diffusive encounters with the crowded cellular background, made up of protein surfaces that are largely nonconserved. The question is then if/how this protein search is amenable to selection and biological control. To shed light on this issue, we examined the motions of three evolutionary divergent proteins in the Escherichia coli cytoplasm by in-cell NMR. The results show that the diffusive in-cell motions, after all, follow simplistic physical-chemical rules: The proteins reveal a common dependence on (i) net charge density, (ii) surface hydrophobicity, and (iii) the electric dipole moment. The bacterial protein is here biased to move relatively freely in the bacterial interior, whereas the human counterparts more easily stick. Even so, the in-cell motions respond predictably to surface mutation, allowing us to tune and intermix the protein's behavior at will. The findings show how evolution can swiftly optimize the diffuse background of protein encounter complexes by just single-point mutations, and provide a rational framework for adjusting the cytoplasmic motions of individual proteins, e.g., for rescuing poor in-cell NMR signals and for optimizing protein therapeutics.

Place, publisher, year, edition, pages
2017. Vol. 114, no 23, p. E4556-E4563
Keywords [en]
in-cell NMR, protein surface properties, intracellular diffusion
National Category
Biological Sciences
Research subject
Biochemistry
Identifiers
URN: urn:nbn:se:su:diva-144791DOI: 10.1073/pnas.1621227114ISI: 000402703800006PubMedID: 28536196OAI: oai:DiVA.org:su-144791DiVA, id: diva2:1123283
Available from: 2017-07-13 Created: 2017-07-13 Last updated: 2019-12-12Bibliographically approved
In thesis
1. Protein stability and mobility in live cells: Revelation of the intracellular diffusive interaction organization mechanisms
Open this publication in new window or tab >>Protein stability and mobility in live cells: Revelation of the intracellular diffusive interaction organization mechanisms
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biochemical processes inside living cells take place in a confined and highly crowded environment. As such, macromolecular crowding, one of the most important physicochemical properties of cytoplasm, is an essential element of cell physiology. It not only gives rise to steric repulsion, but also promotes non-specific, transient, interactions (referred to as diffusive interactions) between molecules. Since diffusive interactions are a key way to achieving a highly organized intracellular environment, without such interactions, the cell is just “a bag of molecules”. Therefore, understanding how diffusive interactions modulate protein behavior in live cells is of fundamental importance for revealing the mechanisms of molecular recognition, as well as for understanding the cause of protein misfolding diseases.

This thesis focuses on how macromolecular crowding influences the stability and diffusive motions of proteins within living cells by modulating their diffusive interactions. First, we investigated the thermal stability of superoxide dismutase 1 (SOD1), a protein involved in the development of familial amyotrophic lateral sclerosis (ALS), in mammalian and E. coli cells. Intriguingly, the major thermodynamic consequence of macromolecular crowding is due not only to conventional steric repulsions, but primarily to the detailed chemical nature of the diffusive protein interactions in live cells. Secondly, we presented a mutational study of how these diffusive interactions influence the rotation of proteins in the mammalian and bacterial cytosol. The result is a quantitative description of the physicochemical code for the intracellular protein motion, showing that it depends critically on the surface details of protein and the type of the host cell as well. Thirdly, we characterized the impact of  intracellular protein concentration by altering the volume of E. coli cells by osmotic shock. The results obtained show that the intracellular diffusion of proteins is not determined by the chemical properties of the protein surface alone, but also by the frequency of concentration-dependent encounters. Moreover, it appears that eukaryotes and bacteria have achieved fidelity of biological processes through different evolutionary strategies. Overall, these observations have numerous implications for both functional protein design and deciphering the evolution of the surface characteristics of proteins.

Subsequently, we attempted to shed new light on the Hofmeister series, using protein-folding kinetics as observable. The results indicate that the Hofmeister series cannot be explained entirely by the traditional Kosmotropes/Chaotropes classification. Strong hetero-ion pairing cannot be ignored when trying to understand the effects of salts on protein salting-in and salting-out behaviors.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2019. p. 67
Keywords
diffusive interactions, macromolecular crowding, protein thermodynamic stability, protein mobility, in-cell NMR, Hofmeister series
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:su:diva-175632 (URN)978-91-7797-931-9 (ISBN)978-91-7797-932-6 (ISBN)
Public defence
2019-12-19, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript. Paper 5: Manuscript.

Available from: 2019-11-26 Created: 2019-11-07 Last updated: 2020-05-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Mu, XinChoi, SeongilLang, LisaDanielsson, JensOliveberg, Mikael
By organisation
Department of Biochemistry and Biophysics
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 58 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf