Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Host cell-derived lactate functions as an effector molecule in Neisseria meningitidis microcolony dispersal
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Show others and affiliations
Number of Authors: 8
2017 (English)In: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 13, no 4, e1006251Article in journal (Refereed) Published
Abstract [en]

The development of meningococcal disease, caused by the human pathogen Neisseria meningitidis, is preceded by the colonization of the epithelial layer in the nasopharynx. After initial adhesion to host cells meningococci form aggregates, through pilus-pilus interactions, termed microcolonies from which the bacteria later detach. Dispersal from microcolonies enables access to new colonization sites and facilitates the crossing of the cell barrier; however, this process is poorly understood. In this study, we used live-cell imaging to investigate the process of N. meningitidis microcolony dispersal. We show that direct contact with host cells is not required for microcolony dispersal, instead accumulation of a host-derived effector molecule induces microcolony dispersal. By using a host-cell free approach, we demonstrated that lactate, secreted from host cells, initiate rapid dispersal of microcolonies. Interestingly, metabolic utilization of lactate by the bacteria was not required for induction of dispersal, suggesting that lactate plays a role as a signaling molecule. Furthermore, Neisseria gonorrhoeae microcolony dispersal could also be induced by lactate. These findings reveal a role of host-secreted lactate in microcolony dispersal and virulence of pathogenic Neisseria.

Place, publisher, year, edition, pages
2017. Vol. 13, no 4, e1006251
National Category
Biological Sciences Cell and Molecular Biology
Identifiers
URN: urn:nbn:se:su:diva-144725DOI: 10.1371/journal.ppat.1006251ISI: 000402555700005OAI: oai:DiVA.org:su-144725DiVA: diva2:1127916
Available from: 2017-07-20 Created: 2017-07-20 Last updated: 2017-07-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sigurlásdóttir, SaraSaroj, Sunil D.Zguna, NadezdaIlag, Leopold L.Jonsson, Ann-Beth
By organisation
Department of Molecular Biosciences, The Wenner-Gren InstituteDepartment of Environmental Science and Analytical Chemistry
In the same journal
PLoS Pathogens
Biological SciencesCell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf