Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Seasonal variability in ecosystem functions: quantifying the contribution of invasive species to nutrient cycling in coastal ecosystems
Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre. University of Helsinki, Finland.
Number of Authors: 4
2017 (English)In: Marine Ecology Progress Series, ISSN 0171-8630, E-ISSN 1616-1599, Vol. 572, 193-207 p.Article in journal (Refereed) Published
Abstract [en]

Benthic ecosystems at temperate and high latitudes experience marked seasonal variation in the environmental factors affecting nutrient remineralization processes both directly and indirectly through their effects on the benthic communities. The invasive polychaete genus Marenzelleria represents new functionality in Baltic Sea sediments through its deep burrowing and extensive gallery formation, thus possibly greatly affecting benthic oxygen and nutrient fluxes. We assessed the seasonal contribution of Marenzelleria spp. to fluxes of solutes in monthly field measurements at 2 sites, 10 and 33 m deep, in the northern Baltic Proper over 1 yr. In general, the fluxes of inorganic nutrients and oxygen were higher during summer than during winter, and the seasonal variation was more pronounced at the deeper, more biologically active site. By using variation partitioning, we were able to demonstrate that Marenzelleria and other macrofauna could account for up to 92% of the variation in the fluxes depending on the site and season. Fauna was the most important in predicting the fluxes in spring when the sediment organic content and the abundance of juvenile Marenzelleria spp. were highest, while during e.g. winter, the influence of Marenzelleria spp., even though abundant, on solute fluxes was negligible. The results from this study have implications for management, and, importantly, for the modelling of nutrient budgets often based on values from studies conducted during the summer period only, thus possibly greatly miscalculating the annual nutrient fluxes.

Place, publisher, year, edition, pages
2017. Vol. 572, 193-207 p.
Keyword [en]
Nutrient cycling, Spionid polychaete, Invasion, Key species, Benthic-pelagic coupling, Bioturbation, Seasonality, Marenzelleria
National Category
Biological Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-145257DOI: 10.3354/meps12171ISI: 000403446100014OAI: oai:DiVA.org:su-145257DiVA: diva2:1128434
Available from: 2017-07-25 Created: 2017-07-25 Last updated: 2017-07-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Stockholm University Baltic Sea Centre
In the same journal
Marine Ecology Progress Series
Biological SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 101 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf