Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Can transverse relaxation rates in deep gray matter be approximated from functional and T-2-weighted FLAIR scans for relative brain iron quantification?
Stockholm University, Faculty of Social Sciences, Aging Research Center (ARC), (together with KI).
Stockholm University, Faculty of Social Sciences, Aging Research Center (ARC), (together with KI).
Stockholm University, Faculty of Social Sciences, Aging Research Center (ARC), (together with KI).
Number of Authors: 4
2017 (English)In: Magnetic Resonance Imaging, ISSN 0730-725X, E-ISSN 1873-5894, Vol. 40, 75-82 p.Article in journal (Refereed) Published
Abstract [en]

Alterations in iron concentration in certain deep gray matter regions are known to occur in aging and several clinical conditions. In vivo measurements of R-2* transverse relaxation rates and quantitative susceptibility mapping (QSM) have been shown to be strongly correlated with iron concentration in tissue, but their calculation requires the acquisition of a multi-echo gradient recalled echo sequence (MGRE). In the current study, we examined the feasibility of approximating R-2* rates using metrics derived from fMRI-EPI and T-2-weighted FLAIR images, which are widely available. In a sample of 40 healthy subjects, we obtained these metrics (v(EPI) and v(FLAIR)), as well as R-2* rates and QSM estimates, and found significant correlations between v(EPI) and v(FLAIR) and R-2* rates in several subcortical gray matter regions known to accumulate iron, but not in a control corticospinal white matter region. These relationships were preserved after referencing v(EPI) and v(FLAIR) with respect to the values in the control region. Effect sizes (above 0.5 for some of the regions, particularly the largest ones) were calculated and put in relation to those of the correlation between QSM and R-2* rates. We propose that the metrics described here may be applied, possibly in a retrospective fashion, to analyze datasets with available EPI or T-2-weighted FLAIR scans (and lacking a MGRE sequence), to devise new hypotheses regarding links between iron concentration in brain tissue and other variables of interest.

Place, publisher, year, edition, pages
2017. Vol. 40, 75-82 p.
Keyword [en]
Brain iron, Quantitative susceptibility mapping, R-2*, Relaxometry, FMRI, FLAIR
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:su:diva-145184DOI: 10.1016/j.mri.2017.04.005ISI: 000403386200009PubMedID: 28438711OAI: oai:DiVA.org:su-145184DiVA: diva2:1129326
Available from: 2017-08-02 Created: 2017-08-02 Last updated: 2017-08-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Aging Research Center (ARC), (together with KI)
In the same journal
Magnetic Resonance Imaging
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf